Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,21 +1,19 @@
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
3 |
-
import torch
|
4 |
|
5 |
# Carregar o modelo e o tokenizer
|
6 |
model_name = "vic35get/nhtsa_complaints_classifier"
|
7 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
8 |
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
|
|
9 |
|
10 |
# Função para inferência
|
11 |
-
def predict(text):
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
return torch.argmax(outputs.logits, dim=1).item()
|
16 |
-
|
17 |
# Interface Gradio
|
18 |
iface = gr.Interface(fn=predict, inputs="text", outputs="text")
|
19 |
|
20 |
# Rodar a interface
|
21 |
-
iface.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
|
|
|
3 |
|
4 |
# Carregar o modelo e o tokenizer
|
5 |
model_name = "vic35get/nhtsa_complaints_classifier"
|
6 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
7 |
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
8 |
+
pipeline_clf = pipeline("text-classification", tokenizer=tokenizer, model=model)
|
9 |
|
10 |
# Função para inferência
|
11 |
+
def predict(text: str):
|
12 |
+
classification = pipeline_clf(text)[0]
|
13 |
+
return classification.get('label')
|
14 |
+
|
|
|
|
|
15 |
# Interface Gradio
|
16 |
iface = gr.Interface(fn=predict, inputs="text", outputs="text")
|
17 |
|
18 |
# Rodar a interface
|
19 |
+
iface.launch()
|