vi108 commited on
Commit
ec40339
·
verified ·
1 Parent(s): d6730e3

Update src/streamlit_app.py

Browse files
Files changed (1) hide show
  1. src/streamlit_app.py +81 -81
src/streamlit_app.py CHANGED
@@ -2,7 +2,7 @@
2
  # ✅ Cache-Safe Multimodal App
3
  # ================================
4
 
5
- import os
6
 
7
  # ====== Force all cache dirs to /tmp (writable in most environments) ======
8
  CACHE_BASE = "/tmp/cache"
@@ -13,6 +13,10 @@ os.environ["HF_DATASETS_CACHE"] = f"{CACHE_BASE}/hf_datasets"
13
  os.environ["TORCH_HOME"] = f"{CACHE_BASE}/torch"
14
  os.environ["STREAMLIT_CACHE_DIR"] = f"{CACHE_BASE}/streamlit_cache"
15
  os.environ["STREAMLIT_STATIC_DIR"] = f"{CACHE_BASE}/streamlit_static"
 
 
 
 
16
 
17
  # Create the directories before imports
18
  for path in os.environ.values():
@@ -26,37 +30,30 @@ from sentence_transformers import SentenceTransformer, util
26
  from transformers import CLIPProcessor, CLIPModel
27
  from datasets import load_dataset, get_dataset_split_names
28
  from PIL import Image
29
- import openai
30
  import comet_llm
31
  from opik import track
32
 
33
- os.environ["STREAMLIT_CONFIG_DIR"] = "/tmp/.streamlit"
34
- os.environ["STREAMLIT_CACHE_DIR"] = f"{CACHE_BASE}/streamlit_cache"
35
- os.environ["STREAMLIT_STATIC_DIR"] = f"{CACHE_BASE}/streamlit_static"
36
-
37
- os.makedirs("/tmp/.streamlit", exist_ok=True)
38
-
39
-
40
  # ========== 🔑 API Key ==========
41
- openai.api_key = os.getenv("OPENAI_API_KEY")
42
  os.environ["OPIK_API_KEY"] = os.getenv("OPIK_API_KEY")
43
  os.environ["OPIK_WORKSPACE"] = os.getenv("OPIK_WORKSPACE")
44
  # ========== 📥 Load Models ==========
45
  @st.cache_resource(show_spinner=False)
46
  def load_models():
47
- clip_model = CLIPModel.from_pretrained(
48
  "openai/clip-vit-base-patch32",
49
  cache_dir=os.environ["TRANSFORMERS_CACHE"]
50
  )
51
- clip_processor = CLIPProcessor.from_pretrained(
52
  "openai/clip-vit-base-patch32",
53
  cache_dir=os.environ["TRANSFORMERS_CACHE"]
54
  )
55
- text_model = SentenceTransformer(
56
  "all-MiniLM-L6-v2",
57
  cache_folder=os.environ["SENTENCE_TRANSFORMERS_HOME"]
58
  )
59
- return clip_model, clip_processor, text_model
60
 
61
  clip_model, clip_processor, text_model = load_models()
62
 
@@ -72,10 +69,24 @@ def load_medical_data():
72
  )
73
  return dataset
74
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75
  data = load_medical_data()
 
76
 
77
- from openai import OpenAI
78
- client = OpenAI(api_key=openai.api_key)
79
  # Temporary debug display
80
  #st.write("Dataset columns:", data.features.keys())
81
 
@@ -102,17 +113,37 @@ combined_texts = prepare_combined_texts(data)
102
  def embed_dataset_texts(_texts):
103
  return text_model.encode(_texts, convert_to_tensor=True)
104
 
105
- def embed_query_text(query):
106
- return text_model.encode([query], convert_to_tensor=True)[0]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
107
 
108
  # Pick which text column to use
109
  TEXT_COLUMN = "complaints" # or "general_complaint", depending on your needs
110
 
111
  # ========== 🧑‍⚕️ App UI ==========
112
- st.title("🩺 Dr_Q_bot - Multimodal Medical Chatbot")
113
 
114
  query = st.text_input("Enter your medical question or symptom description:")
115
- uploaded_file = st.file_uploader("Upload an image to find similar medical cases:", type=["png", "jpg", "jpeg"])
116
 
117
  # Add author info in the sidebar
118
  with st.sidebar:
@@ -120,44 +151,8 @@ with st.sidebar:
120
  st.markdown("**Vasan Iyer**")
121
  st.markdown("**Eric J Giacomucci**")
122
  st.markdown("[GitHub](https://github.com/Vaiy108)")
123
- st.markdown("[LinkedIn](https://linkedin.com/in/vasan-iyer)")
124
-
125
- @track
126
- def get_chat_completion_openai(client, prompt: str):
127
- return client.chat.completions.create(
128
- model="gpt-4o", # or "gpt-4" if you need the older GPT-4
129
- messages=[{"role": "user", "content": prompt}],
130
- temperature=0.5,
131
- max_tokens=150
132
- )
133
-
134
- @track
135
- def get_similar_prompt(query):
136
- text_embeddings = embed_dataset_texts(combined_texts) # cached
137
- query_embedding = embed_query_text(query) # recalculated each time
138
-
139
- cos_scores = util.pytorch_cos_sim(query_embedding, text_embeddings)[0]
140
- top_result = torch.topk(cos_scores, k=1)
141
- idx = top_result.indices[0].item()
142
- return data[idx]
143
-
144
- # Cache dataset image embeddings (takes time, so cached)
145
- @st.cache_data(show_spinner=True)
146
- def embed_dataset_images(_dataset):
147
- features = []
148
- for item in _dataset:
149
- # Load image from URL/path or raw bytes - adapt this if needed
150
- img = item["image"]
151
- inputs = clip_processor(images=img, return_tensors="pt")
152
- with torch.no_grad():
153
- feat = clip_model.get_image_features(**inputs)
154
- feat /= feat.norm(p=2, dim=-1, keepdim=True)
155
- features.append(feat.cpu())
156
- return torch.cat(features, dim=0)
157
-
158
- dataset_image_features = embed_dataset_images(data)
159
 
160
- #if query:
161
  if st.button("Submit") and query:
162
  with st.spinner("Searching medical cases..."):
163
 
@@ -172,7 +167,7 @@ if st.button("Submit") and query:
172
  st.markdown(f"**Case Description:** {selected[TEXT_COLUMN]}")
173
 
174
  # GPT Explanation
175
- if openai.api_key:
176
  prompt = f"Explain this case in plain English: {selected[TEXT_COLUMN]}"
177
 
178
  explanation = get_chat_completion_openai(client, prompt)
@@ -182,32 +177,37 @@ if st.button("Submit") and query:
182
  else:
183
  st.warning("OpenAI API key not found. Please set OPENAI_API_KEY as a secret environment variable.")
184
 
185
- if uploaded_file is not None:
186
- print('uploading file')
187
- print(uploaded_file)
188
- query_image = Image.open(uploaded_file).convert("RGB")
189
- st.image(query_image, caption="Your uploaded image", use_container_width=True)
190
 
191
- # Embed uploaded image
192
- inputs = clip_processor(images=query_image, return_tensors="pt")
193
- with torch.no_grad():
194
- query_feat = clip_model.get_image_features(**inputs)
195
- query_feat /= query_feat.norm(p=2, dim=-1, keepdim=True)
196
 
197
- # Compute cosine similarity
198
- similarities = (dataset_image_features @ query_feat.T).squeeze(1) # [num_dataset_images]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
199
 
200
- top_k = 3
201
- top_results = torch.topk(similarities, k=top_k)
202
 
203
- st.write(f"Top {top_k} similar medical cases:")
204
 
205
- for rank, idx in enumerate(top_results.indices):
206
- score = top_results.values[rank].item()
207
- similar_img = data[int(idx)]['image']
208
- st.image(similar_img, caption=f"Similarity: {score:.3f}", use_container_width=True)
209
- st.markdown(f"**Case description:** {data[int(idx)]['complaints']}")
210
- else:
211
- print("no image")
212
 
213
- st.caption("This chatbot is for educational purposes only and does not provide medical advice.")
 
2
  # ✅ Cache-Safe Multimodal App
3
  # ================================
4
 
5
+ import shutil, os
6
 
7
  # ====== Force all cache dirs to /tmp (writable in most environments) ======
8
  CACHE_BASE = "/tmp/cache"
 
13
  os.environ["TORCH_HOME"] = f"{CACHE_BASE}/torch"
14
  os.environ["STREAMLIT_CACHE_DIR"] = f"{CACHE_BASE}/streamlit_cache"
15
  os.environ["STREAMLIT_STATIC_DIR"] = f"{CACHE_BASE}/streamlit_static"
16
+ os.environ["STREAMLIT_CONFIG_DIR"] = "/tmp/.streamlit"
17
+
18
+ # Create the directories before imports
19
+ os.makedirs(os.environ["STREAMLIT_CONFIG_DIR"], exist_ok=True)
20
 
21
  # Create the directories before imports
22
  for path in os.environ.values():
 
30
  from transformers import CLIPProcessor, CLIPModel
31
  from datasets import load_dataset, get_dataset_split_names
32
  from PIL import Image
33
+ from openai import OpenAI
34
  import comet_llm
35
  from opik import track
36
 
 
 
 
 
 
 
 
37
  # ========== 🔑 API Key ==========
38
+ OpenAI.api_key = os.getenv("OPENAI_API_KEY")
39
  os.environ["OPIK_API_KEY"] = os.getenv("OPIK_API_KEY")
40
  os.environ["OPIK_WORKSPACE"] = os.getenv("OPIK_WORKSPACE")
41
  # ========== 📥 Load Models ==========
42
  @st.cache_resource(show_spinner=False)
43
  def load_models():
44
+ _clip_model = CLIPModel.from_pretrained(
45
  "openai/clip-vit-base-patch32",
46
  cache_dir=os.environ["TRANSFORMERS_CACHE"]
47
  )
48
+ _clip_processor = CLIPProcessor.from_pretrained(
49
  "openai/clip-vit-base-patch32",
50
  cache_dir=os.environ["TRANSFORMERS_CACHE"]
51
  )
52
+ _text_model = SentenceTransformer(
53
  "all-MiniLM-L6-v2",
54
  cache_folder=os.environ["SENTENCE_TRANSFORMERS_HOME"]
55
  )
56
+ return _clip_model, _clip_processor, _text_model
57
 
58
  clip_model, clip_processor, text_model = load_models()
59
 
 
69
  )
70
  return dataset
71
 
72
+ # Cache dataset image embeddings (takes time, so cached)
73
+ @st.cache_data(show_spinner=True)
74
+ def embed_dataset_images(_dataset):
75
+ features = []
76
+ for item in _dataset:
77
+ # Load image from URL/path or raw bytes - adapt this if needed
78
+ img = item["image"]
79
+ inputs_img = clip_processor(images=img, return_tensors="pt")
80
+ with torch.no_grad():
81
+ feat = clip_model.get_image_features(**inputs_img)
82
+ feat /= feat.norm(p=2, dim=-1, keepdim=True)
83
+ features.append(feat.cpu())
84
+ return torch.cat(features, dim=0)
85
+
86
  data = load_medical_data()
87
+ dataset_image_features = embed_dataset_images(data)
88
 
89
+ client = OpenAI(api_key=OpenAI.api_key)
 
90
  # Temporary debug display
91
  #st.write("Dataset columns:", data.features.keys())
92
 
 
113
  def embed_dataset_texts(_texts):
114
  return text_model.encode(_texts, convert_to_tensor=True)
115
 
116
+ def embed_query_text(_query):
117
+ return text_model.encode([_query], convert_to_tensor=True)[0]
118
+
119
+ @track
120
+ def get_chat_completion_openai(_client, _prompt: str):
121
+ return _client.chat.completions.create(
122
+ model="gpt-4o", # or "gpt-4" if you need the older GPT-4
123
+ messages=[{"role": "user", "content": _prompt}],
124
+ temperature=0.5,
125
+ max_tokens=425
126
+ )
127
+
128
+ @track
129
+ def get_similar_prompt(_query):
130
+ text_embeddings = embed_dataset_texts(combined_texts) # cached
131
+ query_embedding = embed_query_text(_query) # recalculated each time
132
+
133
+ cos_scores = util.pytorch_cos_sim(query_embedding, text_embeddings)[0]
134
+ top_result = torch.topk(cos_scores, k=1)
135
+ _idx = top_result.indices[0].item()
136
+ return data[_idx]
137
+
138
 
139
  # Pick which text column to use
140
  TEXT_COLUMN = "complaints" # or "general_complaint", depending on your needs
141
 
142
  # ========== 🧑‍⚕️ App UI ==========
143
+ st.title("🩺 Multimodal Medical Chatbot")
144
 
145
  query = st.text_input("Enter your medical question or symptom description:")
146
+ uploaded_files = st.file_uploader("Upload an image to find similar medical cases:", type=["png", "jpg", "jpeg"], accept_multiple_files=True)
147
 
148
  # Add author info in the sidebar
149
  with st.sidebar:
 
151
  st.markdown("**Vasan Iyer**")
152
  st.markdown("**Eric J Giacomucci**")
153
  st.markdown("[GitHub](https://github.com/Vaiy108)")
154
+ st.markdown("[LinkedIn](https://linkedin.com/in/vasan-iyer)")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
155
 
 
156
  if st.button("Submit") and query:
157
  with st.spinner("Searching medical cases..."):
158
 
 
167
  st.markdown(f"**Case Description:** {selected[TEXT_COLUMN]}")
168
 
169
  # GPT Explanation
170
+ if OpenAI.api_key:
171
  prompt = f"Explain this case in plain English: {selected[TEXT_COLUMN]}"
172
 
173
  explanation = get_chat_completion_openai(client, prompt)
 
177
  else:
178
  st.warning("OpenAI API key not found. Please set OPENAI_API_KEY as a secret environment variable.")
179
 
 
 
 
 
 
180
 
 
 
 
 
 
181
 
182
+ if uploaded_files is not None:
183
+ with st.spinner("Searching medical cases..."):
184
+ st.write(f"Number of files: {len(uploaded_files)}")
185
+
186
+ if len(uploaded_files) > 0:
187
+ print(uploaded_files)
188
+ uploaded_file = uploaded_files[0]
189
+ st.write(f'uploading file {uploaded_file.name}')
190
+ query_image = Image.open(uploaded_file).convert("RGB")
191
+ st.image(query_image, caption="Your uploaded image", use_container_width=True)
192
+
193
+ # Embed uploaded image
194
+ inputs = clip_processor(images=query_image, return_tensors="pt")
195
+ with torch.no_grad():
196
+ query_feat = clip_model.get_image_features(**inputs)
197
+ query_feat /= query_feat.norm(p=2, dim=-1, keepdim=True)
198
+
199
+ # Compute cosine similarity
200
+ similarities = (dataset_image_features @ query_feat.T).squeeze(1) # [num_dataset_images]
201
 
202
+ top_k = 3
203
+ top_results = torch.topk(similarities, k=top_k)
204
 
205
+ st.write(f"Top {top_k} similar medical cases:")
206
 
207
+ for rank, idx in enumerate(top_results.indices):
208
+ score = top_results.values[rank].item()
209
+ similar_img = data[int(idx)]['image']
210
+ st.image(similar_img, caption=f"Similarity: {score:.3f}", use_container_width=True)
211
+ st.markdown(f"**Case description:** {data[int(idx)]['complaints']}")
 
 
212
 
213
+ st.caption("This chatbot is for educational purposes only and does not provide medical advice.")