chat-2 / app.py
metastable-void
new model
e38ab6b
raw
history blame
3.3 kB
#!/usr/bin/env python
import os
from collections.abc import Iterator
from threading import Thread
import gradio as gr
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, pipeline
from peft import PeftModel
DESCRIPTION = "# 真空ジェネレータ\n<p>Imitate 真空 (@vericava)'s posts interactively</p>"
if not torch.cuda.is_available():
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "32768"))
if torch.cuda.is_available():
my_pipeline=pipeline(
task="text-generation",
model="vericava/gpt2-medium-vericava-posts-v3",
do_sample=True,
num_beams=1,
)
@spaces.GPU
@torch.inference_mode()
def generate(
message: str,
chat_history: list[tuple[str, str]],
max_new_tokens: int = 1024,
temperature: float = 0.7,
top_p: float = 0.95,
top_k: int = 50,
repetition_penalty: float = 1.0,
) -> Iterator[str]:
user_input = " ".join(message.strip().split("\n"))
user_input = user_input if (
user_input.endswith("。")
or user_input.endswith("?")
or user_input.endswith("!")
or user_input.endswith("?")
or user_input.endswith("!")
) else user_input + "。"
output = my_pipeline(
user_input,
temperature=temperature,
max_new_tokens=max_new_tokens,
repetition_penalty=repetition_penalty,
top_k=top_k,
top_p=top_p,
)
print(output)
gen_text = output[len(user_input):]
gen_text = gen_text[:gen_text.find("\n")] if "\n" in gen_text else gen_text
gen_text = gen_text[:(gen_text.rfind("。") + 1)] if "。" in gen_text else gen_text
yield gen_text
demo = gr.ChatInterface(
fn=generate,
type="tuples",
additional_inputs_accordion=gr.Accordion(label="詳細設定", open=False),
additional_inputs=[
gr.Slider(
label="Max new tokens",
minimum=1,
maximum=MAX_MAX_NEW_TOKENS,
step=1,
value=DEFAULT_MAX_NEW_TOKENS,
),
gr.Slider(
label="Temperature",
minimum=0.1,
maximum=4.0,
step=0.1,
value=1.0,
),
gr.Slider(
label="Top-p (nucleus sampling)",
minimum=0.05,
maximum=1.0,
step=0.05,
value=0.95,
),
gr.Slider(
label="Top-k",
minimum=1,
maximum=1000,
step=1,
value=50,
),
gr.Slider(
label="Repetition penalty",
minimum=1.0,
maximum=2.0,
step=0.05,
value=1.5,
),
],
stop_btn=None,
examples=[
["サマリーを作る男の人,サマリーマン。"],
["やばい場所にクリティカルな配線ができてしまったので掲示した。"],
["にゃん"],
["Wikipedia の情報は入っているのかもしれない"],
],
description=DESCRIPTION,
css_paths="style.css",
fill_height=True,
)
if __name__ == "__main__":
demo.launch()