Spaces:
Runtime error
Runtime error
Upload 6 files
Browse files- .gitattributes +2 -0
- app1.py +76 -0
- requirements.txt +8 -0
- us_census/acsbr-015.pdf +0 -0
- us_census/acsbr-016.pdf +3 -0
- us_census/acsbr-017.pdf +3 -0
- us_census/p70-178.pdf +0 -0
.gitattributes
CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
us_census/acsbr-016.pdf filter=lfs diff=lfs merge=lfs -text
|
37 |
+
us_census/acsbr-017.pdf filter=lfs diff=lfs merge=lfs -text
|
app1.py
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import os
|
3 |
+
from langchain_nvidia_ai_endpoints import NVIDIAEmbeddings, ChatNVIDIA
|
4 |
+
from langchain_community.document_loaders import WebBaseLoader
|
5 |
+
from langchain.embeddings import OllamaEmbeddings
|
6 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
7 |
+
from langchain.chains.combine_documents import create_stuff_documents_chain
|
8 |
+
from langchain_core.prompts import ChatPromptTemplate
|
9 |
+
from langchain_core.output_parsers import StrOutputParser
|
10 |
+
from langchain.chains import create_retrieval_chain
|
11 |
+
from langchain_community.vectorstores import FAISS
|
12 |
+
from langchain_community.document_loaders import PyPDFDirectoryLoader
|
13 |
+
import time
|
14 |
+
|
15 |
+
from dotenv import load_dotenv
|
16 |
+
load_dotenv()
|
17 |
+
|
18 |
+
## load the Groq API key
|
19 |
+
os.environ['NVIDIA_API_KEY']=os.getenv("NVIDIA_API_KEY")
|
20 |
+
|
21 |
+
def vector_embedding():
|
22 |
+
|
23 |
+
if "vectors" not in st.session_state:
|
24 |
+
|
25 |
+
st.session_state.embeddings=NVIDIAEmbeddings()
|
26 |
+
st.session_state.loader=PyPDFDirectoryLoader("./us_census") ## Data Ingestion
|
27 |
+
st.session_state.docs=st.session_state.loader.load() ## Document Loading
|
28 |
+
st.session_state.text_splitter=RecursiveCharacterTextSplitter(chunk_size=700,chunk_overlap=50) ## Chunk Creation
|
29 |
+
st.session_state.final_documents=st.session_state.text_splitter.split_documents(st.session_state.docs[:30]) #splitting
|
30 |
+
print("hEllo")
|
31 |
+
st.session_state.vectors=FAISS.from_documents(st.session_state.final_documents,st.session_state.embeddings) #vector OpenAI embeddings
|
32 |
+
|
33 |
+
|
34 |
+
st.title("Nvidia NIM Demo")
|
35 |
+
llm = ChatNVIDIA(model="meta/llama3-70b-instruct")
|
36 |
+
|
37 |
+
|
38 |
+
prompt=ChatPromptTemplate.from_template(
|
39 |
+
"""
|
40 |
+
Answer the questions based on the provided context only.
|
41 |
+
Please provide the most accurate response based on the question
|
42 |
+
<context>
|
43 |
+
{context}
|
44 |
+
<context>
|
45 |
+
Questions:{input}
|
46 |
+
|
47 |
+
"""
|
48 |
+
)
|
49 |
+
|
50 |
+
|
51 |
+
prompt1=st.text_input("Enter Your Question From Doduments")
|
52 |
+
|
53 |
+
|
54 |
+
if st.button("Documents Embedding"):
|
55 |
+
vector_embedding()
|
56 |
+
st.write("Vector Store DB Is Ready")
|
57 |
+
|
58 |
+
import time
|
59 |
+
|
60 |
+
|
61 |
+
|
62 |
+
if prompt1:
|
63 |
+
document_chain=create_stuff_documents_chain(llm,prompt)
|
64 |
+
retriever=st.session_state.vectors.as_retriever()
|
65 |
+
retrieval_chain=create_retrieval_chain(retriever,document_chain)
|
66 |
+
start=time.process_time()
|
67 |
+
response=retrieval_chain.invoke({'input':prompt1})
|
68 |
+
print("Response time :",time.process_time()-start)
|
69 |
+
st.write(response['answer'])
|
70 |
+
|
71 |
+
# With a streamlit expander
|
72 |
+
with st.expander("Document Similarity Search"):
|
73 |
+
# Find the relevant chunks
|
74 |
+
for i, doc in enumerate(response["context"]):
|
75 |
+
st.write(doc.page_content)
|
76 |
+
st.write("--------------------------------")
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
openai
|
2 |
+
langchain_nvidia_ai_endpoints
|
3 |
+
langchain_community
|
4 |
+
faiss-cpu
|
5 |
+
python-dotenv
|
6 |
+
streamlit
|
7 |
+
pypdf
|
8 |
+
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
|
us_census/acsbr-015.pdf
ADDED
Binary file (872 kB). View file
|
|
us_census/acsbr-016.pdf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:efdd4140ab4bfd3801771525f4c784dedeaec7c4f83aaa382517aae37ea05eed
|
3 |
+
size 2286774
|
us_census/acsbr-017.pdf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4cacfe8c64d32bf3a5a7729a271cbf7a526c3bea798c866e075af033f50d5d81
|
3 |
+
size 1389492
|
us_census/p70-178.pdf
ADDED
Binary file (419 kB). View file
|
|