vensonaa commited on
Commit
f38f243
·
verified ·
1 Parent(s): 72c091f

Upload 6 files

Browse files
.gitattributes CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ us_census/acsbr-016.pdf filter=lfs diff=lfs merge=lfs -text
37
+ us_census/acsbr-017.pdf filter=lfs diff=lfs merge=lfs -text
app1.py ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import os
3
+ from langchain_nvidia_ai_endpoints import NVIDIAEmbeddings, ChatNVIDIA
4
+ from langchain_community.document_loaders import WebBaseLoader
5
+ from langchain.embeddings import OllamaEmbeddings
6
+ from langchain.text_splitter import RecursiveCharacterTextSplitter
7
+ from langchain.chains.combine_documents import create_stuff_documents_chain
8
+ from langchain_core.prompts import ChatPromptTemplate
9
+ from langchain_core.output_parsers import StrOutputParser
10
+ from langchain.chains import create_retrieval_chain
11
+ from langchain_community.vectorstores import FAISS
12
+ from langchain_community.document_loaders import PyPDFDirectoryLoader
13
+ import time
14
+
15
+ from dotenv import load_dotenv
16
+ load_dotenv()
17
+
18
+ ## load the Groq API key
19
+ os.environ['NVIDIA_API_KEY']=os.getenv("NVIDIA_API_KEY")
20
+
21
+ def vector_embedding():
22
+
23
+ if "vectors" not in st.session_state:
24
+
25
+ st.session_state.embeddings=NVIDIAEmbeddings()
26
+ st.session_state.loader=PyPDFDirectoryLoader("./us_census") ## Data Ingestion
27
+ st.session_state.docs=st.session_state.loader.load() ## Document Loading
28
+ st.session_state.text_splitter=RecursiveCharacterTextSplitter(chunk_size=700,chunk_overlap=50) ## Chunk Creation
29
+ st.session_state.final_documents=st.session_state.text_splitter.split_documents(st.session_state.docs[:30]) #splitting
30
+ print("hEllo")
31
+ st.session_state.vectors=FAISS.from_documents(st.session_state.final_documents,st.session_state.embeddings) #vector OpenAI embeddings
32
+
33
+
34
+ st.title("Nvidia NIM Demo")
35
+ llm = ChatNVIDIA(model="meta/llama3-70b-instruct")
36
+
37
+
38
+ prompt=ChatPromptTemplate.from_template(
39
+ """
40
+ Answer the questions based on the provided context only.
41
+ Please provide the most accurate response based on the question
42
+ <context>
43
+ {context}
44
+ <context>
45
+ Questions:{input}
46
+
47
+ """
48
+ )
49
+
50
+
51
+ prompt1=st.text_input("Enter Your Question From Doduments")
52
+
53
+
54
+ if st.button("Documents Embedding"):
55
+ vector_embedding()
56
+ st.write("Vector Store DB Is Ready")
57
+
58
+ import time
59
+
60
+
61
+
62
+ if prompt1:
63
+ document_chain=create_stuff_documents_chain(llm,prompt)
64
+ retriever=st.session_state.vectors.as_retriever()
65
+ retrieval_chain=create_retrieval_chain(retriever,document_chain)
66
+ start=time.process_time()
67
+ response=retrieval_chain.invoke({'input':prompt1})
68
+ print("Response time :",time.process_time()-start)
69
+ st.write(response['answer'])
70
+
71
+ # With a streamlit expander
72
+ with st.expander("Document Similarity Search"):
73
+ # Find the relevant chunks
74
+ for i, doc in enumerate(response["context"]):
75
+ st.write(doc.page_content)
76
+ st.write("--------------------------------")
requirements.txt ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ openai
2
+ langchain_nvidia_ai_endpoints
3
+ langchain_community
4
+ faiss-cpu
5
+ python-dotenv
6
+ streamlit
7
+ pypdf
8
+ 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
us_census/acsbr-015.pdf ADDED
Binary file (872 kB). View file
 
us_census/acsbr-016.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:efdd4140ab4bfd3801771525f4c784dedeaec7c4f83aaa382517aae37ea05eed
3
+ size 2286774
us_census/acsbr-017.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4cacfe8c64d32bf3a5a7729a271cbf7a526c3bea798c866e075af033f50d5d81
3
+ size 1389492
us_census/p70-178.pdf ADDED
Binary file (419 kB). View file