File size: 1,757 Bytes
577d9ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import torch
from torch import nn
from typing import Optional, Tuple

from .multimodal_config import MultiModalConfig
from ..utils.kv_cache import KVCache
from ..language.language_model import LanguageModel

class CausalLM(nn.Module):

    def __init__(self, config):
        super().__init__()
        self.config = config
        self.model = LanguageModel(config)
        self.vocab_size = config.vocab_size
        self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)

    def get_input_embeddings(self):
        return self.model.embed_tokens
    
    def tie_weights(self):
        self.lm_head.weight = self.model.embed_tokens.weight

    def forward(
        self,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        kv_cache: Optional[KVCache] = None,
    ) -> Tuple:
        outputs = self.model(
            attention_mask=attention_mask,
            position_ids=position_ids,
            inputs_embeds=inputs_embeds,
            kv_cache=kv_cache,
        )

        hidden_states = outputs
        logits = self.lm_head(hidden_states)
        logits = logits.float()

        return_data = {
            "logits": logits,
        }

        if kv_cache is not None:
            return_data["kv_cache"] = kv_cache

        return return_data

class MultiModalProjector(nn.Module):
    def __init__(self, config: MultiModalConfig):
        super().__init__()
        self.linear = nn.Linear(config.vision_config.hidden_size, config.vision_config.projection_dim, bias=True)

    def forward(self, image_features):
        hidden_states = self.linear(image_features)
        return hidden_states