File size: 1,602 Bytes
577d9ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import torch
from torch import nn
from typing import Optional

from .language_config import LanguageModelConfig
from .language_components import DecoderLayer, RMSNorm, KVCache

class LanguageModel(nn.Module):

    def __init__(self, config: LanguageModelConfig):
        super().__init__()
        self.config = config
        self.padding_idx = config.pad_token_id
        self.vocab_size = config.vocab_size

        self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
        self.layers = nn.ModuleList(
            [DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
        )
        self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)

    def get_input_embeddings(self):
        return self.embed_tokens

    # Ignore copy
    def forward(
        self,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        kv_cache: Optional[KVCache] = None,
    ) -> torch.FloatTensor:
        hidden_states = inputs_embeds
        normalizer = torch.tensor(self.config.hidden_size**0.5, dtype=hidden_states.dtype)
        hidden_states = hidden_states * normalizer

        for decoder_layer in self.layers:
            hidden_states = decoder_layer(
                hidden_states,
                attention_mask=attention_mask,
                position_ids=position_ids,
                kv_cache=kv_cache,
            )

        hidden_states = self.norm(hidden_states)

        return hidden_states