from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch import gradio as gr # Load pre-trained model and tokenizer model_name = "borisn70/bert-43-multilabel-emotion-detection" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSequenceClassification.from_pretrained(model_name) # Labels corresponding to different emotions labels = [ 'admiration', 'amusement', 'anger', 'annoyance', 'approval', 'caring', 'confusion', 'curiosity', 'desire', 'disappointment', 'disapproval', 'disgust', 'embarrassment', 'excitement', 'fear', 'gratitude', 'grief', 'joy', 'love', 'nervousness', 'optimism', 'pride', 'realization', 'relief', 'remorse', 'sadness', 'surprise', 'neutral' ] # Function to predict emotions based on input text def predict_emotions(text): inputs = tokenizer(text, return_tensors="pt") # Tokenize the input text with torch.no_grad(): logits = model(**inputs).logits # Get the model's output logits probs = torch.sigmoid(logits)[0] # Apply sigmoid to get probabilities # Filter results with probability > 0.5 results = {label: float(prob) for label, prob in zip(labels, probs) if prob > 0.5} return results # Set up Gradio interface iface = gr.Interface(fn=predict_emotions, inputs="text", outputs="label") # Launch the app iface.launch()