Spaces:
Runtime error
Runtime error
File size: 1,364 Bytes
820a550 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
import gradio as gr
# Load pre-trained model and tokenizer
model_name = "borisn70/bert-43-multilabel-emotion-detection"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)
# Labels corresponding to different emotions
labels = [
'admiration', 'amusement', 'anger', 'annoyance', 'approval', 'caring', 'confusion',
'curiosity', 'desire', 'disappointment', 'disapproval', 'disgust', 'embarrassment',
'excitement', 'fear', 'gratitude', 'grief', 'joy', 'love', 'nervousness', 'optimism',
'pride', 'realization', 'relief', 'remorse', 'sadness', 'surprise', 'neutral'
]
# Function to predict emotions based on input text
def predict_emotions(text):
inputs = tokenizer(text, return_tensors="pt") # Tokenize the input text
with torch.no_grad():
logits = model(**inputs).logits # Get the model's output logits
probs = torch.sigmoid(logits)[0] # Apply sigmoid to get probabilities
# Filter results with probability > 0.5
results = {label: float(prob) for label, prob in zip(labels, probs) if prob > 0.5}
return results
# Set up Gradio interface
iface = gr.Interface(fn=predict_emotions, inputs="text", outputs="label")
# Launch the app
iface.launch()
|