File size: 5,904 Bytes
b5e0c7e
 
43a369b
b5e0c7e
2a73f32
21a6b42
 
43a369b
21a6b42
6556082
b5e0c7e
70e7890
2a73f32
4f043ae
 
 
43a369b
 
 
 
 
 
 
de0c567
 
 
21a6b42
 
 
 
 
 
 
 
 
70e7890
 
 
 
 
e1452a4
b5e0c7e
 
 
25b67f4
de0c567
6702c7e
21a6b42
25b67f4
70e7890
 
b5e0c7e
 
70e7890
b5e0c7e
21a6b42
 
 
b5e0c7e
de0c567
b5e0c7e
 
 
 
 
18fe490
70e7890
 
b5e0c7e
 
de0c567
25b67f4
 
 
6702c7e
b5e0c7e
2a73f32
b5e0c7e
 
 
25b67f4
b5e0c7e
 
 
 
de0c567
b5e0c7e
 
 
 
 
21a6b42
 
 
 
e1ecd46
21a6b42
 
b5e0c7e
21a6b42
 
 
 
 
b5e0c7e
de0c567
 
 
b5e0c7e
 
 
21a6b42
de0c567
b5e0c7e
de0c567
b5e0c7e
 
de0c567
2a73f32
de0c567
b5e0c7e
de0c567
43a369b
2a73f32
 
 
 
 
43a369b
21a6b42
 
5713460
21a6b42
b5e0c7e
2a73f32
 
 
 
 
 
 
 
 
de0c567
 
 
 
25b67f4
980d6a3
de0c567
 
 
25b67f4
b5e0c7e
 
 
794a40f
18fe490
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
from PIL import Image
import sys
import uuid


import streamlit as st
from streamlit_pills import pills
from streamlit_feedback import streamlit_feedback

from vectara_agentic.agent import AgentStatusType

from agent import initialize_agent, get_agent_config
from utils import thumbs_feedback, escape_dollars_outside_latex, send_amplitude_data

initial_prompt = "How can I help you today?"

# Setup for HTTP API Calls to Amplitude Analytics
if 'device_id' not in st.session_state:
    st.session_state.device_id = str(uuid.uuid4())

if "feedback_key" not in st.session_state:
        st.session_state.feedback_key = 0

def toggle_logs():
    st.session_state.show_logs = not st.session_state.show_logs

def show_example_questions():        
    if len(st.session_state.example_messages) > 0 and st.session_state.first_turn:            
        selected_example = pills("Queries to Try:", st.session_state.example_messages, index=None)
        if selected_example:
            st.session_state.ex_prompt = selected_example
            st.session_state.first_turn = False
            return True
    return False

def update_func(status_type: AgentStatusType, msg: str):
    if status_type != AgentStatusType.AGENT_UPDATE:
        output = f"{status_type.value} - {msg}"
        st.session_state.log_messages.append(output)

def launch_bot():
    def reset():
        st.session_state.messages = [{"role": "assistant", "content": initial_prompt, "avatar": "πŸ¦–"}]
        st.session_state.thinking_message = "Agent at work..."
        st.session_state.log_messages = []
        st.session_state.prompt = None
        st.session_state.ex_prompt = None
        st.session_state.first_turn = True
        st.session_state.show_logs = False
        if 'agent' not in st.session_state:
            st.session_state.agent = initialize_agent(cfg, update_func=update_func)

    if 'cfg' not in st.session_state:
        cfg = get_agent_config()
        st.session_state.cfg = cfg
        st.session_state.ex_prompt = None
        example_messages = [example.strip() for example in cfg.examples.split(",")] if cfg.examples else []
        st.session_state.example_messages = [em for em in example_messages if len(em)>0]
        reset()

    cfg = st.session_state.cfg

    # left side content
    with st.sidebar:
        image = Image.open('Vectara-logo.png')
        st.image(image, width=175)
        st.markdown(f"## {cfg['demo_welcome']}")
        st.markdown(f"{cfg['demo_description']}")

        st.markdown("\n\n")
        bc1, _ = st.columns([1, 1])
        with bc1:
            if st.button('Start Over'):
                reset()
                st.rerun()

        st.divider()
        st.markdown(
            "## How this works?\n"
            "This app was built with [Vectara](https://vectara.com).\n\n"
            "It demonstrates the use of Agentic RAG functionality with Vectara"
        )

    if "messages" not in st.session_state.keys():
        reset()
    
    # Display chat messages
    for message in st.session_state.messages:
        with st.chat_message(message["role"], avatar=message["avatar"]):
            st.write(message["content"])

    example_container = st.empty()
    with example_container:
        if show_example_questions():
            example_container.empty()
            st.session_state.first_turn = False
            st.rerun()

    # User-provided prompt
    if st.session_state.ex_prompt:
        prompt = st.session_state.ex_prompt
    else:
        prompt = st.chat_input()
    if prompt:
        st.session_state.messages.append({"role": "user", "content": prompt, "avatar": 'πŸ§‘β€πŸ’»'})
        st.session_state.prompt = prompt  # Save the prompt in session state
        st.session_state.log_messages = []
        st.session_state.show_logs = False
        with st.chat_message("user", avatar='πŸ§‘β€πŸ’»'):
            print(f"Starting new question: {prompt}\n")
            st.write(prompt)
        st.session_state.ex_prompt = None
        
    # Generate a new response if last message is not from assistant
    if st.session_state.prompt:
        with st.chat_message("assistant", avatar='πŸ€–'):
            with st.spinner(st.session_state.thinking_message):
                res = st.session_state.agent.chat(st.session_state.prompt)
                res = escape_dollars_outside_latex(res)
            message = {"role": "assistant", "content": res, "avatar": 'πŸ€–'}
            st.session_state.messages.append(message)
            st.markdown(res)

        send_amplitude_data(
            user_query=st.session_state.messages[-2]["content"], 
            bot_response=st.session_state.messages[-1]["content"],
            demo_name=cfg['demo_name']
        )

        st.session_state.ex_prompt = None
        st.session_state.prompt = None
        st.session_state.first_turn = False
        st.rerun()

    # Record user feedback
    if (st.session_state.messages[-1]["role"] == "assistant") & (st.session_state.messages[-1]["content"] != "How can I help you today?"):
        streamlit_feedback(
            feedback_type="thumbs", on_submit = thumbs_feedback, key = st.session_state.feedback_key,
            kwargs = {"user_query": st.session_state.messages[-2]["content"],
                      "bot_response": st.session_state.messages[-1]["content"],
                      "demo_name": cfg["demo_name"]}
        )

    log_placeholder = st.empty()
    with log_placeholder.container():
        if st.session_state.show_logs:
            st.button("Hide Logs", on_click=toggle_logs)
            for msg in st.session_state.log_messages:
                st.text(msg)
        else:
            if len(st.session_state.log_messages) > 0:
                st.button("Show Logs", on_click=toggle_logs)

    sys.stdout.flush()

if __name__ == "__main__":
    st.set_page_config(page_title="Legal Assistant", layout="wide")
    launch_bot()