Spaces:
Running
Running
File size: 5,387 Bytes
49b0a2d 4f8926e e6d4ed8 49b0a2d 818f521 86a4cb8 818f521 49b0a2d 86a4cb8 49b0a2d 86a4cb8 49b0a2d 86a4cb8 3eafa3a 86a4cb8 49b0a2d 84357ab 49b0a2d 86a4cb8 49b0a2d 84357ab 49b0a2d 4f8926e b65033f 49b0a2d 46b4ee6 49b0a2d 31be0ff 49b0a2d 35cdc9b 49b0a2d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 |
import os
from typing import Optional
from pydantic import Field, BaseModel
from omegaconf import OmegaConf
from llama_index.core.utilities.sql_wrapper import SQLDatabase
from sqlalchemy import create_engine
from dotenv import load_dotenv
load_dotenv(override=True)
from vectara_agentic.agent import Agent
from vectara_agentic.agent_config import AgentConfig
from vectara_agentic.tools import ToolsFactory, VectaraToolFactory
class AgentTools:
def __init__(self, _cfg, agent_config):
self.tools_factory = ToolsFactory()
self.agent_config = agent_config
self.cfg = _cfg
def get_tools(self):
class QueryElectricCars(BaseModel):
query: str = Field(description="The user query.")
vec_factory_1 = VectaraToolFactory(vectara_api_key=self.cfg.api_keys[0],
vectara_corpus_key=self.cfg.corpus_keys[0])
summarizer = 'vectara-experimental-summary-ext-2023-12-11-med-omni'
ask_vehicles = vec_factory_1.create_rag_tool(
tool_name = "ask_vehicles",
tool_description = """
Given a user query,
returns a response to a user question about electric vehicles.
""",
tool_args_schema = QueryElectricCars,
reranker = "chain", rerank_k = 100,
rerank_chain = [
{
"type": "slingshot",
"cutoff": 0.2
},
{
"type": "mmr",
"diversity_bias": 0.1
}
],
n_sentences_before = 2, n_sentences_after = 2, lambda_val = 0.005,
summary_num_results = 5,
vectara_summarizer = summarizer,
include_citations = False,
)
vec_factory_2 = VectaraToolFactory(vectara_api_key=self.cfg.api_keys[1],
vectara_corpus_key=self.cfg.corpus_keys[1])
class QueryEVLaws(BaseModel):
query: str = Field(description="The user query")
state: Optional[str] = Field(default=None,
description="The two digit state code. Optional.",
examples=['CA', 'US', 'WA'])
policy_type: Optional[str] = Field(default=None,
description="The type of policy. Optional",
examples = ['Laws and Regulations', 'State Incentives', 'Incentives', 'Utility / Private Incentives', 'Programs'])
ask_policies = vec_factory_2.create_rag_tool(
tool_name = "ask_policies",
tool_description = """
Given a user query,
returns a response to a user question about electric vehicles incentives and regulations, in the United States.
You can ask this tool any question about laws passed by states or the federal government related to electric vehicles.
""",
tool_args_schema = QueryEVLaws,
reranker = "chain", rerank_k = 100,
rerank_chain = [
{
"type": "slingshot",
"cutoff": 0.2
},
{
"type": "mmr",
"diversity_bias": 0.1
}
],
n_sentences_before = 2, n_sentences_after = 2, lambda_val = 0.005,
summary_num_results = 10,
vectara_summarizer = summarizer,
include_citations = False,
)
tools_factory = ToolsFactory()
db_tools = tools_factory.database_tools(
tool_name_prefix = "ev",
content_description = 'Electric Vehicles in the state of Washington and other population information',
sql_database = SQLDatabase(create_engine('sqlite:///ev_database.db')),
)
return (tools_factory.standard_tools() +
tools_factory.guardrail_tools() +
db_tools +
[ask_vehicles, ask_policies]
)
def initialize_agent(_cfg, agent_progress_callback=None):
electric_vehicle_bot_instructions = """
- You are a helpful research assistant, with expertise in electric vehicles, in conversation with a user.
- Never discuss politics, and always respond politely.
"""
agent = Agent(
tools=AgentTools(_cfg, AgentConfig()).get_tools(),
topic="Electric vehicles in the United States",
custom_instructions=electric_vehicle_bot_instructions,
agent_progress_callback=agent_progress_callback
)
agent.report()
return agent
def get_agent_config() -> OmegaConf:
cfg = OmegaConf.create({
'corpus_keys': str(os.environ['VECTARA_CORPUS_KEYS']).split(','),
'api_keys': str(os.environ['VECTARA_API_KEYS']).split(','),
'examples': os.environ.get('QUERY_EXAMPLES', None),
'demo_name': "ev-assistant",
'demo_welcome': "Welcome to the EV Assistant demo.",
'demo_description': "This assistant can help you learn about electric vehicles in the United States, including how they work, the advantages of purchasing them, and recent trends based on data in the state of Washington.",
})
return cfg
|