Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import networkx as nx
|
3 |
+
import matplotlib.pyplot as plt
|
4 |
+
import pandas as pd
|
5 |
+
from sentence_transformers import SentenceTransformer
|
6 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
7 |
+
from sklearn.cluster import KMeans
|
8 |
+
|
9 |
+
|
10 |
+
def main():
|
11 |
+
st.title("Financial Graph App")
|
12 |
+
st.write("Enter a financial sentence and see its similarity to predefined keywords.")
|
13 |
+
|
14 |
+
# User input
|
15 |
+
financial_sentence = st.text_area("Enter the financial sentence", value="")
|
16 |
+
|
17 |
+
# Check if the user entered a sentence
|
18 |
+
if financial_sentence.strip() != "":
|
19 |
+
# Predefined keywords
|
20 |
+
keywords = [
|
21 |
+
"Finance",
|
22 |
+
"Fiscal",
|
23 |
+
"Quarterly results",
|
24 |
+
"Revenue",
|
25 |
+
"Profit",
|
26 |
+
]
|
27 |
+
|
28 |
+
# Load the pre-trained Sentence-Transformers model
|
29 |
+
model = SentenceTransformer("sentence-transformers/all-mpnet-base-v2")
|
30 |
+
|
31 |
+
# Generate word embeddings for the financial sentence and keywords
|
32 |
+
sentence_embedding = model.encode([financial_sentence])
|
33 |
+
keyword_embeddings = model.encode(keywords)
|
34 |
+
|
35 |
+
# Calculate cosine similarity between the sentence embedding and keyword embeddings
|
36 |
+
similarity_scores = cosine_similarity(sentence_embedding, keyword_embeddings)[0]
|
37 |
+
|
38 |
+
# Create a graph
|
39 |
+
G = nx.Graph()
|
40 |
+
|
41 |
+
# Add the sentence embedding as a node to the graph
|
42 |
+
G.add_node(financial_sentence, embedding=sentence_embedding[0])
|
43 |
+
|
44 |
+
# Add the keyword embeddings as nodes to the graph
|
45 |
+
for keyword, embedding, similarity in zip(keywords, keyword_embeddings, similarity_scores):
|
46 |
+
G.add_node(keyword, embedding=embedding, similarity=similarity)
|
47 |
+
|
48 |
+
# Add edges between the sentence and keywords with their similarity scores as weights
|
49 |
+
for keyword, similarity in zip(keywords, similarity_scores):
|
50 |
+
G.add_edge(financial_sentence, keyword, weight=similarity)
|
51 |
+
|
52 |
+
# Perform KNN clustering on the keyword embeddings
|
53 |
+
kmeans = KMeans(n_clusters=3)
|
54 |
+
cluster_labels = kmeans.fit_predict(keyword_embeddings)
|
55 |
+
|
56 |
+
# Add cluster labels as node attributes
|
57 |
+
for node, cluster_label in zip(G.nodes, cluster_labels):
|
58 |
+
G.nodes[node]["cluster"] = cluster_label
|
59 |
+
|
60 |
+
# Set node positions using spring layout
|
61 |
+
pos = nx.spring_layout(G)
|
62 |
+
|
63 |
+
# Get unique cluster labels
|
64 |
+
unique_clusters = set(cluster_labels)
|
65 |
+
|
66 |
+
# Assign colors to clusters
|
67 |
+
cluster_colors = ["lightblue", "lightgreen", "lightyellow"]
|
68 |
+
|
69 |
+
# Draw nodes with cluster colors
|
70 |
+
nx.draw_networkx_nodes(
|
71 |
+
G,
|
72 |
+
pos,
|
73 |
+
node_color=[cluster_colors[G.nodes[node].get("cluster", 0)] for node in G.nodes],
|
74 |
+
node_size=800,
|
75 |
+
)
|
76 |
+
|
77 |
+
# Draw edges
|
78 |
+
nx.draw_networkx_edges(G, pos, edge_color="gray", width=1, alpha=0.7)
|
79 |
+
|
80 |
+
# Draw labels
|
81 |
+
nx.draw_networkx_labels(G, pos, font_size=10, font_weight="bold")
|
82 |
+
|
83 |
+
# Draw edge labels (cosine similarity scores)
|
84 |
+
edge_labels = nx.get_edge_attributes(G, "weight")
|
85 |
+
nx.draw_networkx_edge_labels(G, pos, edge_labels=edge_labels, font_size=8)
|
86 |
+
|
87 |
+
# Set plot attributes
|
88 |
+
plt.title("Financial Context and Keywords")
|
89 |
+
plt.axis("off")
|
90 |
+
|
91 |
+
# Save the graph as an image
|
92 |
+
plt.savefig("financial_graph.png")
|
93 |
+
|
94 |
+
# Show the graph
|
95 |
+
st.pyplot()
|
96 |
+
|
97 |
+
# Save the similarity scores in a CSV file
|
98 |
+
df = pd.DataFrame({"Keyword": keywords, "Cosine Similarity": similarity_scores})
|
99 |
+
st.write("Similarity Scores:")
|
100 |
+
st.dataframe(df)
|
101 |
+
|
102 |
+
|
103 |
+
if __name__ == "__main__":
|
104 |
+
main()
|