Spaces:
Runtime error
Runtime error
import gradio as gr | |
import pandas as pd | |
import gzip | |
import shutil | |
import os | |
import logging | |
from huggingface_hub import hf_hub_download | |
from scripts.metrics import ( | |
compute_weekly_metrics_by_market_creator, | |
compute_daily_metrics_by_market_creator, | |
compute_winning_metrics_by_trader, | |
) | |
from scripts.retention_metrics import ( | |
prepare_retention_dataset, | |
calculate_wow_retention_by_type, | |
calculate_cohort_retention, | |
) | |
from tabs.trader_plots import ( | |
plot_trader_metrics_by_market_creator, | |
default_trader_metric, | |
trader_metric_choices, | |
get_metrics_text, | |
plot_winning_metric_per_trader, | |
get_interpretation_text, | |
plot_total_bet_amount, | |
plot_active_traders, | |
) | |
from tabs.daily_graphs import ( | |
get_current_week_data, | |
plot_daily_metrics, | |
trader_daily_metric_choices, | |
default_daily_metric, | |
) | |
from scripts.utils import get_traders_family | |
from tabs.market_plots import ( | |
plot_kl_div_per_market, | |
plot_total_bet_amount_per_trader_per_market, | |
) | |
from tabs.retention_plots import ( | |
plot_wow_retention_by_type, | |
plot_cohort_retention_heatmap, | |
) | |
def get_logger(): | |
logger = logging.getLogger(__name__) | |
logger.setLevel(logging.DEBUG) | |
# stream handler and formatter | |
stream_handler = logging.StreamHandler() | |
stream_handler.setLevel(logging.DEBUG) | |
formatter = logging.Formatter( | |
"%(asctime)s - %(name)s - %(levelname)s - %(message)s" | |
) | |
stream_handler.setFormatter(formatter) | |
logger.addHandler(stream_handler) | |
return logger | |
logger = get_logger() | |
def load_all_data(): | |
# all trades profitability | |
# Download the compressed file | |
gz_filepath_trades = hf_hub_download( | |
repo_id="valory/Olas-predict-dataset", | |
filename="all_trades_profitability.parquet.gz", | |
repo_type="dataset", | |
) | |
parquet_filepath_trades = gz_filepath_trades.replace(".gz", "") | |
parquet_filepath_trades = parquet_filepath_trades.replace("all", "") | |
with gzip.open(gz_filepath_trades, "rb") as f_in: | |
with open(parquet_filepath_trades, "wb") as f_out: | |
shutil.copyfileobj(f_in, f_out) | |
# Now read the decompressed parquet file | |
df1 = pd.read_parquet(parquet_filepath_trades) | |
# closed_markets_div | |
closed_markets_df = hf_hub_download( | |
repo_id="valory/Olas-predict-dataset", | |
filename="closed_markets_div.parquet", | |
repo_type="dataset", | |
) | |
df2 = pd.read_parquet(closed_markets_df) | |
# daily_info | |
daily_info_df = hf_hub_download( | |
repo_id="valory/Olas-predict-dataset", | |
filename="daily_info.parquet", | |
repo_type="dataset", | |
) | |
df3 = pd.read_parquet(daily_info_df) | |
# unknown traders | |
unknown_df = hf_hub_download( | |
repo_id="valory/Olas-predict-dataset", | |
filename="unknown_traders.parquet", | |
repo_type="dataset", | |
) | |
df4 = pd.read_parquet(unknown_df) | |
# retention activity | |
gz_file_path_ret = hf_hub_download( | |
repo_id="valory/Olas-predict-dataset", | |
filename="retention_activity.parquet.gz", | |
repo_type="dataset", | |
) | |
parquet_file_path_ret = gz_file_path_ret.replace(".gz", "") | |
with gzip.open(gz_file_path_ret, "rb") as f_in: | |
with open(parquet_file_path_ret, "wb") as f_out: | |
shutil.copyfileobj(f_in, f_out) | |
df5 = pd.read_parquet(parquet_file_path_ret) | |
# os.remove(parquet_file_path_ret) | |
# active_traders.parquet | |
active_traders_df = hf_hub_download( | |
repo_id="valory/Olas-predict-dataset", | |
filename="active_traders.parquet", | |
repo_type="dataset", | |
) | |
df6 = pd.read_parquet(active_traders_df) | |
# weekly_mech_calls.parquet | |
all_mech_calls_df = hf_hub_download( | |
repo_id="valory/Olas-predict-dataset", | |
filename="weekly_mech_calls.parquet", | |
repo_type="dataset", | |
) | |
df7 = pd.read_parquet(all_mech_calls_df) | |
return df1, df2, df3, df4, df5, df6, df7 | |
def prepare_data(): | |
( | |
all_trades, | |
closed_markets, | |
daily_info, | |
unknown_traders, | |
retention_df, | |
active_traders, | |
all_mech_calls, | |
) = load_all_data() | |
all_trades["creation_date"] = all_trades["creation_timestamp"].dt.date | |
# nr-trades variable | |
volume_trades_per_trader_and_market = ( | |
all_trades.groupby(["trader_address", "title"])["roi"] | |
.count() | |
.reset_index(name="nr_trades_per_market") | |
) | |
traders_data = pd.merge( | |
all_trades, volume_trades_per_trader_and_market, on=["trader_address", "title"] | |
) | |
daily_info["creation_date"] = daily_info["creation_timestamp"].dt.date | |
unknown_traders["creation_date"] = unknown_traders["creation_timestamp"].dt.date | |
# adding the trader family column | |
traders_data["trader_family"] = traders_data.apply( | |
lambda x: get_traders_family(x), axis=1 | |
) | |
# print(traders_data.head()) | |
traders_data = traders_data.sort_values(by="creation_timestamp", ascending=True) | |
unknown_traders = unknown_traders.sort_values( | |
by="creation_timestamp", ascending=True | |
) | |
traders_data["month_year_week"] = ( | |
traders_data["creation_timestamp"] | |
.dt.to_period("W") | |
.dt.start_time.dt.strftime("%b-%d-%Y") | |
) | |
unknown_traders["month_year_week"] = ( | |
unknown_traders["creation_timestamp"] | |
.dt.to_period("W") | |
.dt.start_time.dt.strftime("%b-%d-%Y") | |
) | |
closed_markets["month_year_week"] = ( | |
closed_markets["opening_datetime"] | |
.dt.to_period("W") | |
.dt.start_time.dt.strftime("%b-%d-%Y") | |
) | |
return ( | |
traders_data, | |
closed_markets, | |
daily_info, | |
unknown_traders, | |
retention_df, | |
active_traders, | |
all_mech_calls, | |
) | |
( | |
traders_data, | |
closed_markets, | |
daily_info, | |
unknown_traders, | |
raw_retention_df, | |
active_traders, | |
all_mech_calls, | |
) = prepare_data() | |
retention_df = prepare_retention_dataset( | |
retention_df=raw_retention_df, unknown_df=unknown_traders | |
) | |
print("max date of retention df") | |
print(max(retention_df.creation_timestamp)) | |
demo = gr.Blocks() | |
# get weekly metrics by market creator: qs, pearl or all. | |
weekly_metrics_by_market_creator = compute_weekly_metrics_by_market_creator( | |
traders_data=traders_data, all_mech_calls=all_mech_calls | |
) | |
weekly_o_metrics_by_market_creator = compute_weekly_metrics_by_market_creator( | |
traders_data=traders_data, all_mech_calls=all_mech_calls, trader_filter="Olas" | |
) | |
weekly_non_olas_metrics_by_market_creator = pd.DataFrame() | |
if len(traders_data.loc[traders_data["staking"] == "non_Olas"]) > 0: | |
weekly_non_olas_metrics_by_market_creator = ( | |
compute_weekly_metrics_by_market_creator( | |
traders_data, all_mech_calls, trader_filter="non_Olas" | |
) | |
) | |
weekly_unknown_trader_metrics_by_market_creator = None | |
if len(unknown_traders) > 0: | |
weekly_unknown_trader_metrics_by_market_creator = ( | |
compute_weekly_metrics_by_market_creator( | |
traders_data=unknown_traders, | |
all_mech_calls=None, | |
trader_filter=None, | |
unknown_trader=True, | |
) | |
) | |
# just for all traders | |
weekly_winning_metrics = compute_winning_metrics_by_trader( | |
traders_data=traders_data, unknown_info=unknown_traders | |
) | |
weekly_winning_metrics_olas = compute_winning_metrics_by_trader( | |
traders_data=traders_data, unknown_info=unknown_traders, trader_filter="Olas" | |
) | |
weekly_non_olas_winning_metrics = pd.DataFrame() | |
if len(traders_data.loc[traders_data["staking"] == "non_Olas"]) > 0: | |
weekly_non_olas_winning_metrics = compute_winning_metrics_by_trader( | |
traders_data=traders_data, | |
unknown_info=unknown_traders, | |
trader_filter="non_Olas", | |
) | |
with demo: | |
gr.HTML("<h1>Traders monitoring dashboard </h1>") | |
gr.Markdown("This app shows the weekly performance of the traders in Olas Predict.") | |
with gr.Tabs(): | |
with gr.TabItem("π₯ Weekly metrics"): | |
with gr.Row(): | |
gr.Markdown("# Weekly metrics of all traders") | |
with gr.Row(): | |
trader_details_selector = gr.Dropdown( | |
label="Select a weekly trader metric", | |
choices=trader_metric_choices, | |
value=default_trader_metric, | |
) | |
with gr.Row(): | |
with gr.Column(scale=3): | |
trader_markets_plot = plot_trader_metrics_by_market_creator( | |
metric_name=default_trader_metric, | |
traders_df=weekly_metrics_by_market_creator, | |
) | |
with gr.Column(scale=1): | |
trade_details_text = get_metrics_text(trader_type=None) | |
def update_trader_details(trader_detail): | |
return plot_trader_metrics_by_market_creator( | |
metric_name=trader_detail, | |
traders_df=weekly_metrics_by_market_creator, | |
) | |
trader_details_selector.change( | |
update_trader_details, | |
inputs=trader_details_selector, | |
outputs=trader_markets_plot, | |
) | |
with gr.Row(): | |
gr.Markdown("# Weekly metrics of π Olas traders") | |
with gr.Row(): | |
trader_o_details_selector = gr.Dropdown( | |
label="Select a weekly trader metric", | |
choices=trader_metric_choices, | |
value=default_trader_metric, | |
) | |
with gr.Row(): | |
with gr.Column(scale=3): | |
o_trader_markets_plot = plot_trader_metrics_by_market_creator( | |
metric_name=default_trader_metric, | |
traders_df=weekly_o_metrics_by_market_creator, | |
) | |
with gr.Column(scale=1): | |
trade_details_text = get_metrics_text(trader_type="Olas") | |
def update_a_trader_details(trader_detail): | |
return plot_trader_metrics_by_market_creator( | |
metric_name=trader_detail, | |
traders_df=weekly_o_metrics_by_market_creator, | |
) | |
trader_o_details_selector.change( | |
update_a_trader_details, | |
inputs=trader_o_details_selector, | |
outputs=o_trader_markets_plot, | |
) | |
if len(weekly_non_olas_metrics_by_market_creator) > 0: | |
# Non-Olas traders graph | |
with gr.Row(): | |
gr.Markdown("# Weekly metrics of Non-Olas traders") | |
with gr.Row(): | |
trader_no_details_selector = gr.Dropdown( | |
label="Select a weekly trader metric", | |
choices=trader_metric_choices, | |
value=default_trader_metric, | |
) | |
with gr.Row(): | |
with gr.Column(scale=3): | |
trader_no_markets_plot = plot_trader_metrics_by_market_creator( | |
metric_name=default_trader_metric, | |
traders_df=weekly_non_olas_metrics_by_market_creator, | |
) | |
with gr.Column(scale=1): | |
trade_details_text = get_metrics_text(trader_type="non_Olas") | |
def update_no_trader_details(trader_detail): | |
return plot_trader_metrics_by_market_creator( | |
metric_name=trader_detail, | |
traders_df=weekly_non_olas_metrics_by_market_creator, | |
) | |
trader_no_details_selector.change( | |
update_no_trader_details, | |
inputs=trader_no_details_selector, | |
outputs=trader_no_markets_plot, | |
) | |
# Unknown traders graph | |
if weekly_unknown_trader_metrics_by_market_creator is not None: | |
with gr.Row(): | |
gr.Markdown("# Weekly metrics of Unclassified traders") | |
with gr.Row(): | |
trader_u_details_selector = gr.Dropdown( | |
label="Select a weekly trader metric", | |
choices=trader_metric_choices, | |
value=default_trader_metric, | |
) | |
with gr.Row(): | |
with gr.Column(scale=3): | |
trader_u_markets_plot = plot_trader_metrics_by_market_creator( | |
metric_name=default_trader_metric, | |
traders_df=weekly_unknown_trader_metrics_by_market_creator, | |
) | |
with gr.Column(scale=1): | |
trade_details_text = get_metrics_text( | |
trader_type="unclassified" | |
) | |
def update_u_trader_details(trader_detail): | |
return plot_trader_metrics_by_market_creator( | |
metric_name=trader_detail, | |
traders_df=weekly_unknown_trader_metrics_by_market_creator, | |
) | |
trader_u_details_selector.change( | |
update_u_trader_details, | |
inputs=trader_u_details_selector, | |
outputs=trader_u_markets_plot, | |
) | |
with gr.TabItem("π Daily metrics"): | |
live_trades_current_week = get_current_week_data(trades_df=daily_info) | |
if len(live_trades_current_week) > 0: | |
live_metrics_by_market_creator = ( | |
compute_daily_metrics_by_market_creator( | |
live_trades_current_week, trader_filter=None, live_metrics=True | |
) | |
) | |
else: | |
live_metrics_by_market_creator = pd.DataFrame() | |
with gr.Row(): | |
gr.Markdown("# Daily live metrics for all trades") | |
with gr.Row(): | |
trade_live_details_selector = gr.Dropdown( | |
label="Select a daily live metric", | |
choices=trader_daily_metric_choices, | |
value=default_daily_metric, | |
) | |
with gr.Row(): | |
with gr.Column(scale=3): | |
trade_live_details_plot = plot_daily_metrics( | |
metric_name=default_daily_metric, | |
trades_df=live_metrics_by_market_creator, | |
) | |
with gr.Column(scale=1): | |
trade_details_text = get_metrics_text(daily=True) | |
def update_trade_live_details(trade_detail, trade_live_details_plot): | |
new_a_plot = plot_daily_metrics( | |
metric_name=trade_detail, trades_df=live_metrics_by_market_creator | |
) | |
return new_a_plot | |
trade_live_details_selector.change( | |
update_trade_live_details, | |
inputs=[trade_live_details_selector, trade_live_details_plot], | |
outputs=[trade_live_details_plot], | |
) | |
# Olas traders | |
with gr.Row(): | |
gr.Markdown("# Daily live metrics for π Olas traders") | |
with gr.Row(): | |
o_trader_live_details_selector = gr.Dropdown( | |
label="Select a daily live metric", | |
choices=trader_daily_metric_choices, | |
value=default_daily_metric, | |
) | |
with gr.Row(): | |
with gr.Column(scale=3): | |
o_trader_live_details_plot = plot_daily_metrics( | |
metric_name=default_daily_metric, | |
trades_df=live_metrics_by_market_creator, | |
trader_filter="Olas", | |
) | |
with gr.Column(scale=1): | |
trade_details_text = get_metrics_text(daily=True) | |
def update_a_trader_live_details(trade_detail, a_trader_live_details_plot): | |
o_trader_plot = plot_daily_metrics( | |
metric_name=trade_detail, | |
trades_df=live_metrics_by_market_creator, | |
trader_filter="Olas", | |
) | |
return o_trader_plot | |
o_trader_live_details_selector.change( | |
update_a_trader_live_details, | |
inputs=[o_trader_live_details_selector, o_trader_live_details_plot], | |
outputs=[o_trader_live_details_plot], | |
) | |
with gr.Row(): | |
gr.Markdown("# Daily live metrics for Non-Olas traders") | |
with gr.Row(): | |
no_trader_live_details_selector = gr.Dropdown( | |
label="Select a daily live metric", | |
choices=trader_daily_metric_choices, | |
value=default_daily_metric, | |
) | |
with gr.Row(): | |
with gr.Column(scale=3): | |
no_trader_live_details_plot = plot_daily_metrics( | |
metric_name=default_daily_metric, | |
trades_df=live_metrics_by_market_creator, | |
trader_filter="non_Olas", | |
) | |
with gr.Column(scale=1): | |
trade_details_text = get_metrics_text(daily=True) | |
def update_na_trader_live_details( | |
trade_detail, no_trader_live_details_plot | |
): | |
no_trader_plot = plot_daily_metrics( | |
metric_name=trade_detail, | |
trades_df=live_metrics_by_market_creator, | |
trader_filter="non_Olas", | |
) | |
return no_trader_plot | |
no_trader_live_details_selector.change( | |
update_na_trader_live_details, | |
inputs=[no_trader_live_details_selector, no_trader_live_details_plot], | |
outputs=[no_trader_live_details_plot], | |
) | |
with gr.TabItem("πͺ Retention metrics (WIP)"): | |
with gr.Row(): | |
gr.Markdown("# Wow retention by trader type") | |
with gr.Row(): | |
gr.Markdown( | |
""" | |
Activity based on mech interactions for Olas and non_Olas traders and based on trading acitivity for the unclassified ones. | |
- Olas trader: agent using Mech, with a service ID and the corresponding safe in the registry | |
- Non-Olas trader: agent using Mech, with no service ID | |
- Unclassified trader: agent (safe/EOAs) not using Mechs | |
""" | |
) | |
with gr.Row(): | |
with gr.Column(scale=1): | |
gr.Markdown("## Wow retention in Pearl markets") | |
wow_retention = calculate_wow_retention_by_type( | |
retention_df, market_creator="pearl" | |
) | |
wow_retention_plot = plot_wow_retention_by_type( | |
wow_retention=wow_retention | |
) | |
with gr.Column(scale=1): | |
gr.Markdown("## Wow retention in Quickstart markets") | |
wow_retention = calculate_wow_retention_by_type( | |
retention_df, market_creator="quickstart" | |
) | |
wow_retention_plot = plot_wow_retention_by_type( | |
wow_retention=wow_retention | |
) | |
with gr.Row(): | |
gr.Markdown("# Cohort retention graphs") | |
with gr.Row(): | |
gr.Markdown( | |
"The Cohort groups are organized by cohort weeks. A trader is part of a cohort group/week where it was detected the FIRST activity ever of that trader." | |
) | |
with gr.Row(): | |
gr.Markdown( | |
""" | |
Week 0 for a cohort group is the same cohort week of the FIRST detected activity ever of that trader. | |
Only two values are possible for this Week 0: | |
1. 100% if the cohort size is > 0, meaning all traders active that first cohort week | |
2. 0% if the cohort size = 0, meaning no totally new traders started activity that cohort week. | |
""" | |
) | |
with gr.Row(): | |
with gr.Column(scale=1): | |
gr.Markdown("## Cohort retention of pearl traders") | |
gr.Markdown("### Cohort retention of π Olas traders") | |
cohort_retention_olas_pearl = calculate_cohort_retention( | |
df=retention_df, market_creator="pearl", trader_type="Olas" | |
) | |
cohort_retention_plot1 = plot_cohort_retention_heatmap( | |
retention_matrix=cohort_retention_olas_pearl, cmap="Purples" | |
) | |
with gr.Column(scale=1): | |
gr.Markdown("## Cohort retention of quickstart traders") | |
gr.Markdown("### Cohort retention of π Olas traders") | |
cohort_retention_olas_qs = calculate_cohort_retention( | |
df=retention_df, market_creator="quickstart", trader_type="Olas" | |
) | |
cohort_retention_plot4 = plot_cohort_retention_heatmap( | |
retention_matrix=cohort_retention_olas_qs, | |
cmap="Purples", | |
) | |
# # non_Olas | |
# cohort_retention_non_olas_pearl = calculate_cohort_retention( | |
# df=retention_df, market_creator="pearl", trader_type="non_Olas" | |
# ) | |
# if len(cohort_retention_non_olas_pearl) > 0: | |
# gr.Markdown("## Cohort retention of Non-Olas traders") | |
# cohort_retention_plot2 = plot_cohort_retention_heatmap( | |
# retention_matrix=cohort_retention_non_olas_pearl, | |
# cmap=sns.color_palette("light:goldenrod", as_cmap=True), | |
# ) | |
with gr.Row(): | |
with gr.Column(scale=1): | |
gr.Markdown("## Cohort retention of pearl traders") | |
cohort_retention_unclassified_pearl = calculate_cohort_retention( | |
df=retention_df, | |
market_creator="pearl", | |
trader_type="unclassified", | |
) | |
if len(cohort_retention_unclassified_pearl) > 0: | |
gr.Markdown("### Cohort retention of unclassified traders") | |
cohort_retention_plot3 = plot_cohort_retention_heatmap( | |
retention_matrix=cohort_retention_unclassified_pearl, | |
cmap="Greens", | |
) | |
with gr.Column(scale=1): | |
gr.Markdown("## Cohort retention in quickstart traders") | |
cohort_retention_unclassified_qs = calculate_cohort_retention( | |
df=retention_df, | |
market_creator="quickstart", | |
trader_type="unclassified", | |
) | |
if len(cohort_retention_unclassified_qs) > 0: | |
gr.Markdown("### Cohort retention of unclassified traders") | |
cohort_retention_plot6 = plot_cohort_retention_heatmap( | |
retention_matrix=cohort_retention_unclassified_qs, | |
cmap="Greens", | |
) | |
# # non_Olas | |
# cohort_retention_non_olas_qs = calculate_cohort_retention( | |
# df=retention_df, | |
# market_creator="quickstart", | |
# trader_type="non_Olas", | |
# ) | |
# if len(cohort_retention_non_olas_qs) > 0: | |
# gr.Markdown("## Cohort retention of Non-Olas traders") | |
# cohort_retention_plot5 = plot_cohort_retention_heatmap( | |
# retention_matrix=cohort_retention_non_olas_qs, | |
# cmap=sns.color_palette("light:goldenrod", as_cmap=True), | |
# ) | |
with gr.TabItem("βοΈ Active traders"): | |
with gr.Row(): | |
gr.Markdown("# Active traders for all markets by trader categories") | |
with gr.Row(): | |
active_traders_plot = plot_active_traders(active_traders) | |
with gr.Row(): | |
gr.Markdown("# Active traders for Pearl markets by trader categories") | |
with gr.Row(): | |
active_traders_plot_pearl = plot_active_traders( | |
active_traders, market_creator="pearl" | |
) | |
with gr.Row(): | |
gr.Markdown( | |
"# Active traders for Quickstart markets by trader categories" | |
) | |
with gr.Row(): | |
active_traders_plot_qs = plot_active_traders( | |
active_traders, market_creator="quickstart" | |
) | |
with gr.TabItem("π Markets KullbackβLeibler divergence"): | |
with gr.Row(): | |
gr.Markdown( | |
"# Weekly Market Prediction Accuracy for Closed Markets (Kullback-Leibler Divergence)" | |
) | |
with gr.Row(): | |
gr.Markdown( | |
"Aka, how much off is the market predictionβs accuracy from the real outcome of the event. Values capped at 20 for market outcomes completely opposite to the real outcome." | |
) | |
with gr.Row(): | |
trade_details_text = get_metrics_text() | |
with gr.Row(): | |
with gr.Column(scale=3): | |
kl_div_plot = plot_kl_div_per_market(closed_markets=closed_markets) | |
with gr.Column(scale=1): | |
interpretation = get_interpretation_text() | |
with gr.TabItem("π° Money invested per trader type"): | |
with gr.Row(): | |
gr.Markdown("# Weekly total bet amount per trader type for all markets") | |
gr.Markdown("## Computed only for trader agents using the mech service") | |
with gr.Row(): | |
total_bet_amount = plot_total_bet_amount( | |
traders_data, market_filter="all" | |
) | |
with gr.Row(): | |
gr.Markdown( | |
"# Weekly total bet amount per trader type for Pearl markets" | |
) | |
with gr.Row(): | |
o_trader_total_bet_amount = plot_total_bet_amount( | |
traders_data, market_filter="pearl" | |
) | |
with gr.Row(): | |
gr.Markdown( | |
"# Weekly total bet amount per trader type for Quickstart markets" | |
) | |
with gr.Row(): | |
no_trader_total_bet_amount = plot_total_bet_amount( | |
traders_data, market_filter="quickstart" | |
) | |
with gr.TabItem("π° Money invested per market"): | |
with gr.Row(): | |
gr.Markdown("# Weekly bet amounts per market for all traders") | |
gr.Markdown("## Computed only for trader agents using the mech service") | |
with gr.Row(): | |
bet_amounts = plot_total_bet_amount_per_trader_per_market(traders_data) | |
with gr.Row(): | |
gr.Markdown("# Weekly bet amounts per market for π Olas traders") | |
with gr.Row(): | |
o_trader_bet_amounts = plot_total_bet_amount_per_trader_per_market( | |
traders_data, trader_filter="Olas" | |
) | |
# with gr.Row(): | |
# gr.Markdown("# Weekly bet amounts per market for Non-Olas traders") | |
# with gr.Row(): | |
# no_trader_bet_amounts = plot_total_bet_amount_per_trader_per_market( | |
# traders_data, trader_filter="non_Olas" | |
# ) | |
with gr.TabItem("ποΈWeekly winning trades % per trader"): | |
with gr.Row(): | |
gr.Markdown("# Weekly winning trades percentage from all traders") | |
with gr.Row(): | |
metrics_text = get_metrics_text() | |
with gr.Row(): | |
winning_metric = plot_winning_metric_per_trader(weekly_winning_metrics) | |
with gr.Row(): | |
gr.Markdown("# Weekly winning trades percentage from π Olas traders") | |
with gr.Row(): | |
metrics_text = get_metrics_text() | |
with gr.Row(): | |
winning_metric_olas = plot_winning_metric_per_trader( | |
weekly_winning_metrics_olas | |
) | |
# # non_Olas traders | |
# if len(weekly_non_olas_winning_metrics) > 0: | |
# with gr.Row(): | |
# gr.Markdown( | |
# "# Weekly winning trades percentage from Non-Olas traders" | |
# ) | |
# with gr.Row(): | |
# metrics_text = get_metrics_text() | |
# with gr.Row(): | |
# winning_metric = plot_winning_metric_per_trader( | |
# weekly_non_olas_winning_metrics | |
# ) | |
demo.queue(default_concurrency_limit=40).launch() | |