Upload 7 files
Browse files- .gitattributes +1 -0
- Model_2021_CNN_Xception-V09.hdf5 +3 -0
- Procfile +3 -0
- app.py +176 -0
- requirements-ORIGINAL.txt +6 -0
- requirements.txt +6 -0
- run_app.sh +1 -0
- runtime.txt +1 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
Model_2021_CNN_Xception-V09.hdf5 filter=lfs diff=lfs merge=lfs -text
|
Model_2021_CNN_Xception-V09.hdf5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:95d36d811b2876ca2608cbaae73edd1a38e8f8b18e9c15a2745c1465f3f4e46e
|
3 |
+
size 95097856
|
Procfile
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
web: python app.py
|
2 |
+
|
3 |
+
|
app.py
ADDED
@@ -0,0 +1,176 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from flask import Flask, flash, request, redirect, url_for, render_template
|
3 |
+
from werkzeug.utils import secure_filename
|
4 |
+
import math
|
5 |
+
|
6 |
+
# export FLASK_APP=app
|
7 |
+
# flask run
|
8 |
+
|
9 |
+
arquivo_modelo = 'Model_2021_CNN_Xception-V09.hdf5' #'Model_2021_CNN_VGG19-V01.hdf5' # 'model_Titan-v02.hdf5' S贸 CCN
|
10 |
+
|
11 |
+
|
12 |
+
UPLOAD_FOLDER = '/tmp'
|
13 |
+
ALLOWED_EXTENSIONS = {'txt', 'pdf', 'png', 'jpg', 'jpeg', 'gif'}
|
14 |
+
|
15 |
+
def escolhe_lesao_aleatoria():
|
16 |
+
import glob
|
17 |
+
from random import seed
|
18 |
+
from random import randint
|
19 |
+
|
20 |
+
arquivos = list(glob.glob("static/tmp/*.*"))
|
21 |
+
arquivos = [ arquivo.split('/')[2] for arquivo in arquivos]
|
22 |
+
|
23 |
+
lesao = randint(0,len(arquivos)-1)
|
24 |
+
print(lesao)
|
25 |
+
return arquivos[lesao]
|
26 |
+
|
27 |
+
|
28 |
+
def prever_doencas_de_pele(model, file):
|
29 |
+
import numpy as np
|
30 |
+
from PIL import Image
|
31 |
+
import pandas as pd
|
32 |
+
|
33 |
+
folder = 'static/tmp/'
|
34 |
+
|
35 |
+
dict_idx_doenca = {0: ['Actinic keratoses', 'Queratose Act铆nica'],
|
36 |
+
1: ['Basal cell carcinoma', 'Carcinoma de C茅lulas Basais' ],
|
37 |
+
2: ['Benign keratosis-like lesions ', 'Queratoses Benignas'],
|
38 |
+
3: ['Dermatofibroma', 'Dermatofibroma'], # (Histiocitoma Fibroso Benigno)' ],
|
39 |
+
4: ['Melanocytic nevi', 'Nevo Melan贸cito (Sinal)'], # (Nevo Pigmentado, Sinal)
|
40 |
+
5: [ 'Melanoma', 'Melanoma'],
|
41 |
+
6: ['Vascular lesions', 'Les玫es de Pele Vasculares'],
|
42 |
+
7: ['Acne', 'Acne'],
|
43 |
+
8: ['AlopeciaAreata', 'AlopeciaAreata']}
|
44 |
+
|
45 |
+
indices = []
|
46 |
+
doencas_en = []
|
47 |
+
doencas_pt = []
|
48 |
+
for idx, doenca in (dict_idx_doenca.items()):
|
49 |
+
indices.append(idx)
|
50 |
+
doencas_en.append(doenca[0])
|
51 |
+
doencas_pt.append(doenca[1])
|
52 |
+
|
53 |
+
media_scale_image = 158.4125188825441
|
54 |
+
std_scale_image = 47.42283803971779
|
55 |
+
|
56 |
+
|
57 |
+
x = folder + file
|
58 |
+
#x_pred = np.asarray(Image.open(x).resize((100,75)))
|
59 |
+
|
60 |
+
SIZE = 299 # 224
|
61 |
+
x_pred = np.asarray(Image.open(x).resize((SIZE,SIZE)))
|
62 |
+
x_pred = x_pred.reshape(1, SIZE, SIZE, 3)
|
63 |
+
x_pred = (x_pred - media_scale_image) / std_scale_image
|
64 |
+
#classe = model.predict_classes(x_pred)[0]
|
65 |
+
pred = np.argmax(model.predict(x_pred), axis=-1)
|
66 |
+
probs = model.predict(x_pred)[0]
|
67 |
+
|
68 |
+
probs = np.array(probs) * 100
|
69 |
+
df = pd.DataFrame()
|
70 |
+
df['probs'] = probs
|
71 |
+
print('probs:', probs )
|
72 |
+
df['probs'] = df['probs'].apply(lambda x : int(x))
|
73 |
+
df['doenca_en'] = doencas_en
|
74 |
+
df['doenca_pt'] = doencas_pt
|
75 |
+
df['idx'] = indices
|
76 |
+
df_ordenado = df.sort_values(by=['probs'], ascending=False).reset_index()
|
77 |
+
df_ordenado = df_ordenado[ df_ordenado.probs > 0]
|
78 |
+
|
79 |
+
numero_probilidades_maior_que_zero = len(df_ordenado)
|
80 |
+
if numero_probilidades_maior_que_zero > 3:
|
81 |
+
numero_probilidades_maior_que_zero = 3
|
82 |
+
probs = df_ordenado['probs'][:numero_probilidades_maior_que_zero]
|
83 |
+
doencas = df_ordenado['doenca_pt'][:numero_probilidades_maior_que_zero]
|
84 |
+
|
85 |
+
#probs = df_ordenado['probs'][:3]
|
86 |
+
#doencas = df_ordenado['doenca_pt'][:3]
|
87 |
+
|
88 |
+
#print('diagn贸stico:', doenca, ' - prob:', prob)
|
89 |
+
#print(doenca)
|
90 |
+
#print(prob)
|
91 |
+
|
92 |
+
return doencas, probs
|
93 |
+
|
94 |
+
|
95 |
+
def allowed_file(filename):
|
96 |
+
return '.' in filename and \
|
97 |
+
filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS
|
98 |
+
|
99 |
+
|
100 |
+
app = Flask(__name__, template_folder='templates')
|
101 |
+
app.secret_key = "super secret key"
|
102 |
+
|
103 |
+
app.config['UPLOAD_FOLDER'] = 'static/tmp'
|
104 |
+
app.config['MAX_CONTENT_LENGTH'] = 16 * 1024 * 1024
|
105 |
+
|
106 |
+
|
107 |
+
probs = []
|
108 |
+
classesprev = []
|
109 |
+
model = None
|
110 |
+
|
111 |
+
app.add_url_rule('/static', view_func=app.send_static_file)
|
112 |
+
@app.route('/', methods=['GET', 'POST'])
|
113 |
+
def upload_file():
|
114 |
+
#from app import model
|
115 |
+
global model
|
116 |
+
import numpy as np
|
117 |
+
import tensorflow as tf
|
118 |
+
|
119 |
+
#from keras.models import load_model
|
120 |
+
|
121 |
+
|
122 |
+
if model is None:
|
123 |
+
print('carregando o modelo...')
|
124 |
+
file_model = arquivo_modelo
|
125 |
+
|
126 |
+
from tensorflow import keras
|
127 |
+
# model = keras.models.load_model(file_model)
|
128 |
+
model = tf.keras.models.load_model(file_model,
|
129 |
+
custom_objects={'Functional':tf.keras.models.Model})
|
130 |
+
|
131 |
+
|
132 |
+
|
133 |
+
#model = tf.keras.models.load_model(file_model)
|
134 |
+
#model = load_model(file_model)
|
135 |
+
print('modelo carregado.')
|
136 |
+
|
137 |
+
|
138 |
+
UPLOAD_FOLDER = '/tmp'
|
139 |
+
ALLOWED_EXTENSIONS = {'txt', 'pdf', 'png', 'jpg', 'jpeg', 'gif'}
|
140 |
+
|
141 |
+
if request.method == 'POST':
|
142 |
+
print('request == POST')
|
143 |
+
d = request.form.to_dict(flat=False)
|
144 |
+
print(d)
|
145 |
+
|
146 |
+
if "photo" in d.keys() and "prever_lesao" in d.keys() and d['photo'][0] != '': # request.form["prever_lesao"]:
|
147 |
+
file = request.form['photo']
|
148 |
+
doencas, probs = prever_doencas_de_pele(model, file)
|
149 |
+
|
150 |
+
return render_template("index.html", file='tmp/'+file, probs=probs, classesprev=doencas)
|
151 |
+
|
152 |
+
else:
|
153 |
+
file = escolhe_lesao_aleatoria()
|
154 |
+
print(file)
|
155 |
+
doencas, probs = prever_doencas_de_pele(model, file)
|
156 |
+
|
157 |
+
return render_template("index.html", file='tmp/'+file, probs=probs, classesprev=doencas)
|
158 |
+
|
159 |
+
|
160 |
+
else:
|
161 |
+
print("elsseeeeee")
|
162 |
+
file = escolhe_lesao_aleatoria()
|
163 |
+
doencas, probs = prever_doencas_de_pele(model, file)
|
164 |
+
|
165 |
+
return render_template("index.html", file='tmp/'+file, probs=probs, classesprev=doencas) #, upload_file=global_file)
|
166 |
+
|
167 |
+
@app.route('/about/')
|
168 |
+
def about():
|
169 |
+
return render_template('About.html')
|
170 |
+
|
171 |
+
if __name__ == "__main__":
|
172 |
+
|
173 |
+
app.config['SESSION_TYPE'] = 'filesystem'
|
174 |
+
port = int(os.environ.get("PORT", 5000))
|
175 |
+
app.debug = True
|
176 |
+
app.run(host='0.0.0.0', port=port)
|
requirements-ORIGINAL.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Flask==1.1.2
|
2 |
+
tensorflow==2.0.0
|
3 |
+
werkzeug==1.0.1
|
4 |
+
pandas==1.0.3
|
5 |
+
numpy==1.18.1
|
6 |
+
Pillow==7.1.2
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Flask==2.0.2
|
2 |
+
numpy==1.19.5
|
3 |
+
pandas==1.3.4
|
4 |
+
Pillow==8.4.0
|
5 |
+
tensorflow_cpu==2.5.0
|
6 |
+
Werkzeug==2.0.2
|
run_app.sh
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
flask --app app.py run
|
runtime.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
python-3.7.10
|