File size: 3,874 Bytes
3848545
b4fc608
 
 
cf75435
b4fc608
 
 
 
 
 
 
 
 
b990905
 
d24bd47
d322739
3dcad86
 
 
8ef7c37
 
3dcad86
8ef7c37
 
b4fc608
c23eaa3
8ef7c37
 
 
2bef81d
8ef7c37
 
2bef81d
 
 
57c9efe
 
2bef81d
3848545
 
b4fc608
3848545
8ef7c37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b4fc608
3848545
d24bd47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b990905
 
 
 
 
 
 
 
 
 
 
 
 
 
b4fc608
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ef7c37
 
b4fc608
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
# from transformers import AutoModelForCausalLM, AutoTokenizer
import time
import datetime

import streamlit as st

question = "Name the planets in the solar system? A: "

question = "Quais são os planetas do sistema solar?" 

question = "Qual é o maior planeta do sistema solar?" 


before = datetime.datetime.now()

# Load model directly
# from transformers import AutoTokenizer, AutoModelForCausalLM

# tokenizer = AutoTokenizer.from_pretrained("01-ai/Yi-1.5-6B-Chat")
# model = AutoModelForCausalLM.from_pretrained("01-ai/Yi-1.5-6B-Chat")

# Load model directly
from transformers import AutoTokenizer, Phi3ForCausalLM

model = Phi3ForCausalLM.from_pretrained("microsoft/phi-3-mini-4k-instruct")
tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-3-mini-4k-instruct")

prompt = "Question: Qual é o maior planeta do sistema solar ?"
inputs = tokenizer(prompt, return_tensors="pt")

# Generate
generate_ids = model.generate(inputs.input_ids, max_length=100)
output = tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]



with st.container():
    st.write('\n\n')
    st.write('LLM-LANAChat')
    st.write('\n\n' + output)









# tokenizer = AutoTokenizer.from_pretrained("FacebookAI/roberta-base")
# model = TFRobertaModel.from_pretrained("FacebookAI/roberta-base")

# st.write('tokenizando...')
# inputs = tokenizer(question, return_tensors="tf")

# st.write('gerando a saida...')
# outputs = model(inputs)

# last_hidden_states = outputs.last_hidden_state

# output = last_hidden_states

# st.write(output)


# st.write('tokenizando...')
# prompt = "Qual é o maior planeta do sistema solar ?"
# # inputs = tokenizer(prompt, return_tensors="pt")

# # Generate

# st.write('gerando a saida...')
# # generate_ids = model.generate(inputs.input_ids, max_length=30)
# # output = tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]


# st.write('saída gerada')

# st.write(output)

# # Use a pipeline as a high-level helper
# # from transformers import pipeline

# # messages = [
# #     {"role": "user", "content": question},
# # ]

# print('gerando a saida...')

# st.write('gerando a saida...')

# pipe = pipeline("text-generation", model="01-ai/Yi-1.5-34B-Chat")

# st.write('pipeline...')

# output = pipe(messages)

# st.write('saída gerada...')

# st.write(output)



# print('tokenizando...')

# tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False)

# print('tokenizado.')

# print('carregando o modelo...')
# # Since transformers 4.35.0, the GPT-Q/AWQ model can be loaded using AutoModelForCausalLM.
# model = AutoModelForCausalLM.from_pretrained(
#     model_path,
#     device_map="auto",
#     torch_dtype='auto'
# ).eval()
# print('modelo carreegado.')

# # Prompt content: "hi"
# messages = [
#     {"role": "user", "content": question}
# ]

# print('tokenizando o prompt...')
# input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, return_tensors='pt')
# print('prompt tokenizado.')

# print('gerando a saida...')
# output_ids = model.generate(input_ids, eos_token_id=tokenizer.eos_token_id,
#                                           max_new_tokens=10) #10 # 45
#                                        # max_new_tokens=22)
print('saida gerada.')

# print('Decodificando a saida...')
# response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True)
# print('saida decodificada.')

# Model response: "Hello! How can I assist you today?"
# print(response)

# question = output['choices'][0]['text'].split('A:')[0]
# answer = output['choices'][0]['text'].split('A:')[1]
# answer = 'A: ' + answer

print('\n\n')
# print(question)
# print(response)

after = datetime.datetime.now()

current_time = (after - before) # .strftime("%H:%M:%S")
print("\nTime Elapsed: ", current_time)