Spaces:
Sleeping
Sleeping
Create main.py
Browse files
main.py
ADDED
|
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from fastapi import FastAPI
|
| 2 |
+
from pydantic import BaseModel
|
| 3 |
+
from transformers import GPT2Tokenizer, GPT2Model
|
| 4 |
+
from langchain.prompts import PromptTemplate
|
| 5 |
+
|
| 6 |
+
app = FastAPI()
|
| 7 |
+
|
| 8 |
+
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
|
| 9 |
+
model = GPT2Model.from_pretrained('gpt2')
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
class TextRequest(BaseModel):
|
| 13 |
+
text: str
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
def preprocess_text(text: str):
|
| 17 |
+
return text.lower()
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
def classify_text(question: str):
|
| 21 |
+
prompt_template = PromptTemplate(template="Answer the following question and classify it: {question}", input_variables = ["question"], output_variables=["answer", "classification"])
|
| 22 |
+
# Model loading
|
| 23 |
+
format_prompt = prompt_template.format(question=question)
|
| 24 |
+
encoded_input = tokenizer(format_prompt, return_tensors='pt')
|
| 25 |
+
output = model(encoded_input)
|
| 26 |
+
# chain = LLMChain(llm=llm, prompt=prompt_template, verbose=True)
|
| 27 |
+
# response = chain({"question": question})
|
| 28 |
+
return output
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
@app.post("/classify")
|
| 32 |
+
async def classify_text_endpoint(request: TextRequest):
|
| 33 |
+
preprocessed_text = preprocess_text(request.text)
|
| 34 |
+
response = classify_text(preprocessed_text)
|
| 35 |
+
answer = response['text']
|
| 36 |
+
return {"answer": answer}
|