Spaces:
Runtime error
Runtime error
Commit
·
e4c43f7
1
Parent(s):
5c24ca1
Update app.py
Browse files
app.py
CHANGED
@@ -14,38 +14,6 @@ from huggingface_hub import login
|
|
14 |
hf_token = os.environ.get('HUGGINGFACE_TOKEN')
|
15 |
|
16 |
login(hf_token)
|
17 |
-
# Functions to Wrap the Prompt Correctly
|
18 |
-
def wrap_text(text, width=90):
|
19 |
-
lines = text.split('\n')
|
20 |
-
wrapped_lines = [textwrap.fill(line, width=width) for line in lines]
|
21 |
-
wrapped_text = '\n'.join(wrapped_lines)
|
22 |
-
return wrapped_text
|
23 |
-
def multimodal_prompt(user_input, system_prompt="You are an expert medical analyst:"):
|
24 |
-
|
25 |
-
# Combine user input and system prompt
|
26 |
-
formatted_input = f"{user_input}{system_prompt}"
|
27 |
-
|
28 |
-
# Encode the input text
|
29 |
-
encodeds = tokenizer(formatted_input, return_tensors="pt", add_special_tokens=False)
|
30 |
-
model_inputs = encodeds.to(device)
|
31 |
-
|
32 |
-
# Generate a response using the model
|
33 |
-
output = model.generate(
|
34 |
-
**model_inputs,
|
35 |
-
max_length=max_length,
|
36 |
-
use_cache=True,
|
37 |
-
early_stopping=True,
|
38 |
-
bos_token_id=model.config.bos_token_id,
|
39 |
-
eos_token_id=model.config.eos_token_id,
|
40 |
-
pad_token_id=model.config.eos_token_id,
|
41 |
-
temperature=0.1,
|
42 |
-
do_sample=True
|
43 |
-
)
|
44 |
-
|
45 |
-
# Decode the response
|
46 |
-
response_text = tokenizer.decode(output[0], skip_special_tokens=True)
|
47 |
-
|
48 |
-
return response_text
|
49 |
|
50 |
# Define the device
|
51 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
@@ -67,35 +35,31 @@ peft_model = PeftModel.from_pretrained(peft_model, "vaishakgkumar/stablemedv1",
|
|
67 |
class ChatBot:
|
68 |
def __init__(self):
|
69 |
self.history = []
|
70 |
-
|
71 |
-
def predict(self, user_input, system_prompt="You are an expert analyst and provide assessment:"):
|
72 |
-
prompt = [{'role': 'user', 'content': user_input + "\n" + system_prompt + ":"}]
|
73 |
-
inputs = tokenizer.apply_chat_template(
|
74 |
-
prompt,
|
75 |
-
add_generation_prompt=True,
|
76 |
-
return_tensors='pt'
|
77 |
-
)
|
78 |
-
|
79 |
-
# Generate a response using the model
|
80 |
-
tokens = peft_model.generate(
|
81 |
-
inputs.to(model.device),
|
82 |
-
max_new_tokens=250,
|
83 |
-
temperature=0.8,
|
84 |
-
do_sample=False
|
85 |
-
)
|
86 |
-
|
87 |
-
# Decode the response
|
88 |
-
response_text = tokenizer.decode(tokens[0], skip_special_tokens=False)
|
89 |
-
|
90 |
-
# Free up memory
|
91 |
-
del tokens
|
92 |
-
torch.cuda.empty_cache()
|
93 |
|
94 |
-
|
|
|
|
|
95 |
|
|
|
|
|
96 |
|
97 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
|
|
|
|
|
|
|
|
|
|
|
99 |
|
100 |
|
101 |
title = "StableDoc Chat"
|
|
|
14 |
hf_token = os.environ.get('HUGGINGFACE_TOKEN')
|
15 |
|
16 |
login(hf_token)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
# Define the device
|
19 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
35 |
class ChatBot:
|
36 |
def __init__(self):
|
37 |
self.history = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
+
def predict(self, user_input, system_prompt="You are an expert medical analyst:"):
|
40 |
+
# Combine user input and system prompt
|
41 |
+
formatted_input = f"{system_prompt}{user_input}"
|
42 |
|
43 |
+
# Encode user input
|
44 |
+
user_input_ids = tokenizer.encode(formatted_input, return_tensors="pt")
|
45 |
|
46 |
+
# Concatenate the user input with chat history
|
47 |
+
if len(self.history) > 0:
|
48 |
+
chat_history_ids = torch.cat([self.history, user_input_ids], dim=-1)
|
49 |
+
else:
|
50 |
+
chat_history_ids = user_input_ids
|
51 |
+
|
52 |
+
# Generate a response using the PEFT model
|
53 |
+
response = peft_model.generate(input_ids=chat_history_ids, max_length=1200, pad_token_id=tokenizer.eos_token_id)
|
54 |
+
|
55 |
+
# Update chat history
|
56 |
+
self.history = chat_history_ids
|
57 |
|
58 |
+
# Decode and return the response
|
59 |
+
response_text = tokenizer.decode(response[0], skip_special_tokens=True)
|
60 |
+
return response_text
|
61 |
+
|
62 |
+
bot = ChatBot()
|
63 |
|
64 |
|
65 |
title = "StableDoc Chat"
|