Spaces:
Runtime error
Runtime error
Commit
·
97822ab
1
Parent(s):
329f7fe
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoTokenizer, MistralForCausalLM
|
2 |
+
import torch
|
3 |
+
import gradio as gr
|
4 |
+
import random
|
5 |
+
from textwrap import wrap
|
6 |
+
from transformers import AutoConfig, AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForCausalLM, MistralForCausalLM
|
7 |
+
from peft import PeftModel, PeftConfig
|
8 |
+
import torch
|
9 |
+
import gradio as gr
|
10 |
+
import os
|
11 |
+
|
12 |
+
hf_token = os.environ.get('HUGGINGFACE_TOKEN')
|
13 |
+
|
14 |
+
# Functions to Wrap the Prompt Correctly
|
15 |
+
def wrap_text(text, width=90):
|
16 |
+
lines = text.split('\n')
|
17 |
+
wrapped_lines = [textwrap.fill(line, width=width) for line in lines]
|
18 |
+
wrapped_text = '\n'.join(wrapped_lines)
|
19 |
+
return wrapped_text
|
20 |
+
def multimodal_prompt(user_input, system_prompt="You are an expert medical analyst:"):
|
21 |
+
|
22 |
+
# Combine user input and system prompt
|
23 |
+
formatted_input = f"{user_input}{system_prompt}"
|
24 |
+
|
25 |
+
# Encode the input text
|
26 |
+
encodeds = tokenizer(formatted_input, return_tensors="pt", add_special_tokens=False)
|
27 |
+
model_inputs = encodeds.to(device)
|
28 |
+
|
29 |
+
# Generate a response using the model
|
30 |
+
output = model.generate(
|
31 |
+
**model_inputs,
|
32 |
+
max_length=max_length,
|
33 |
+
use_cache=True,
|
34 |
+
early_stopping=True,
|
35 |
+
bos_token_id=model.config.bos_token_id,
|
36 |
+
eos_token_id=model.config.eos_token_id,
|
37 |
+
pad_token_id=model.config.eos_token_id,
|
38 |
+
temperature=0.1,
|
39 |
+
do_sample=True
|
40 |
+
)
|
41 |
+
|
42 |
+
# Decode the response
|
43 |
+
response_text = tokenizer.decode(output[0], skip_special_tokens=True)
|
44 |
+
|
45 |
+
return response_text
|
46 |
+
|
47 |
+
# Define the device
|
48 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
49 |
+
|
50 |
+
# Use the base model's ID
|
51 |
+
base_model_id = "stabilityai/stablelm-3b-4e1t"
|
52 |
+
model_directory = "Tonic/stablemed"
|
53 |
+
|
54 |
+
# Instantiate the Tokenizer
|
55 |
+
tokenizer = AutoTokenizer.from_pretrained("stabilityai/stablelm-3b-4e1t", token=hf_token, trust_remote_code=True, padding_side="left")
|
56 |
+
# tokenizer = AutoTokenizer.from_pretrained("Tonic/stablemed", trust_remote_code=True, padding_side="left")
|
57 |
+
tokenizer.pad_token = tokenizer.eos_token
|
58 |
+
tokenizer.padding_side = 'left'
|
59 |
+
|
60 |
+
# Load the PEFT model
|
61 |
+
peft_config = PeftConfig.from_pretrained("Tonic/stablemed", token=hf_token)
|
62 |
+
peft_model = AutoModelForCausalLM.from_pretrained("stabilityai/stablelm-3b-4e1t", token=hf_token, trust_remote_code=True)
|
63 |
+
peft_model = PeftModel.from_pretrained(peft_model, "Tonic/stablemed", token=hf_token)
|
64 |
+
|
65 |
+
class ChatBot:
|
66 |
+
def __init__(self):
|
67 |
+
self.history = []
|
68 |
+
|
69 |
+
def predict(self, user_input, system_prompt="You are an expert medical analyst:"):
|
70 |
+
# Combine user input and system prompt
|
71 |
+
formatted_input = f"{user_input}{system_prompt}"
|
72 |
+
|
73 |
+
# Encode user input
|
74 |
+
user_input_ids = tokenizer.encode(formatted_input, return_tensors="pt")
|
75 |
+
|
76 |
+
# Concatenate the user input with chat history
|
77 |
+
if len(self.history) > 0:
|
78 |
+
chat_history_ids = torch.cat([self.history, user_input_ids], dim=-1)
|
79 |
+
else:
|
80 |
+
chat_history_ids = user_input_ids
|
81 |
+
|
82 |
+
# Generate a response using the PEFT model
|
83 |
+
response = peft_model.generate(input_ids=chat_history_ids, max_length=1200, pad_token_id=tokenizer.eos_token_id)
|
84 |
+
|
85 |
+
# Update chat history
|
86 |
+
self.history = chat_history_ids
|
87 |
+
|
88 |
+
# Decode and return the response
|
89 |
+
response_text = tokenizer.decode(response[0], skip_special_tokens=True)
|
90 |
+
return response_text
|
91 |
+
|
92 |
+
bot = ChatBot()
|
93 |
+
|
94 |
+
title = "👋🏻Welcome to Tonic's 😷StableMed⚕️ Chat🦟"
|
95 |
+
description = """
|
96 |
+
You can use this Space to test out the current model [StableMed](https://huggingface.co/Tonic/stablemed)
|
97 |
+
You can also use 😷StableMed⚕️ on your laptop & by cloning this space. 🧬🔬🔍 Simply click here: <a style="display:inline-block" href="https://huggingface.co/spaces/Tonic/StableMed_Chat?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></h3>
|
98 |
+
Join us : 🌟TeamTonic🌟 is always making cool demos! Join our active builder's🛠️community on 👻Discord: [Discord](https://discord.gg/GWpVpekp) On 🤗Huggingface: [TeamTonic](https://huggingface.co/TeamTonic) & [MultiTransformer](https://huggingface.co/MultiTransformer) On 🌐Github: [Polytonic](https://github.com/tonic-ai) & contribute to 🌟 [PolyGPT](https://github.com/tonic-ai/polygpt-alpha)
|
99 |
+
"""
|
100 |
+
examples = [["What is the proper treatment for buccal herpes?", "Please provide information on the most effective antiviral medications and home remedies for treating buccal herpes."]]
|
101 |
+
|
102 |
+
iface = gr.Interface(
|
103 |
+
fn=bot.predict,
|
104 |
+
title=title,
|
105 |
+
description=description,
|
106 |
+
examples=examples,
|
107 |
+
inputs=["text", "text"], # Take user input and system prompt separately
|
108 |
+
outputs="text",
|
109 |
+
theme="ParityError/Anime"
|
110 |
+
)
|
111 |
+
|
112 |
+
iface.launch()
|