AustingDong
commited on
Commit
·
4db7aa5
1
Parent(s):
5da9d34
fixed multi-layer
Browse files- .gitignore +3 -1
- app.py +52 -19
- demo/cam.py +35 -96
.gitignore
CHANGED
|
@@ -418,4 +418,6 @@ tags
|
|
| 418 |
[._]*.un~
|
| 419 |
.vscode
|
| 420 |
.github
|
| 421 |
-
generated_samples/
|
|
|
|
|
|
|
|
|
| 418 |
[._]*.un~
|
| 419 |
.vscode
|
| 420 |
.github
|
| 421 |
+
generated_samples/
|
| 422 |
+
|
| 423 |
+
results
|
app.py
CHANGED
|
@@ -9,6 +9,7 @@ from demo.model_utils import Clip_Utils, Janus_Utils, LLaVA_Utils, ChartGemma_Ut
|
|
| 9 |
import numpy as np
|
| 10 |
import matplotlib.pyplot as plt
|
| 11 |
import gc
|
|
|
|
| 12 |
import spaces
|
| 13 |
from PIL import Image
|
| 14 |
|
|
@@ -53,7 +54,7 @@ def multimodal_understanding(model_type,
|
|
| 53 |
activation_map_method,
|
| 54 |
visual_pooling_method,
|
| 55 |
image, question, seed, top_p, temperature, target_token_idx,
|
| 56 |
-
visualization_layer_min, visualization_layer_max, focus, response_type):
|
| 57 |
# Clear CUDA cache before generating
|
| 58 |
gc.collect()
|
| 59 |
if torch.cuda.is_available():
|
|
@@ -75,7 +76,8 @@ def multimodal_understanding(model_type,
|
|
| 75 |
if activation_map_method == "GradCAM":
|
| 76 |
# Generate Grad-CAM
|
| 77 |
all_layers = [layer.layer_norm1 for layer in clip_utils.model.vision_model.encoder.layers]
|
| 78 |
-
|
|
|
|
| 79 |
target_layers = all_layers[visualization_layer_min-1 : visualization_layer_max-1]
|
| 80 |
else:
|
| 81 |
target_layers = [all_layers[visualization_layer_min-1]]
|
|
@@ -110,12 +112,6 @@ def multimodal_understanding(model_type,
|
|
| 110 |
|
| 111 |
input_ids = prepare_inputs.input_ids[0].cpu().tolist()
|
| 112 |
input_ids_decoded = [tokenizer.decode([input_ids[i]]) for i in range(len(input_ids))]
|
| 113 |
-
# if model_name.split('-')[0] == "Janus":
|
| 114 |
-
# start = 620
|
| 115 |
-
# elif model_name.split('-')[0] == "ChartGemma":
|
| 116 |
-
# start = 1024
|
| 117 |
-
# elif model_name.split('-')[0] == "LLaVA":
|
| 118 |
-
# start = 581
|
| 119 |
|
| 120 |
if activation_map_method == "GradCAM":
|
| 121 |
# target_layers = vl_gpt.vision_model.vision_tower.blocks
|
|
@@ -123,11 +119,15 @@ def multimodal_understanding(model_type,
|
|
| 123 |
all_layers = [block.norm1 for block in vl_gpt.vision_model.vision_tower.blocks]
|
| 124 |
else:
|
| 125 |
all_layers = [layer.self_attn for layer in vl_gpt.language_model.model.layers]
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
|
|
|
|
|
|
| 129 |
else:
|
|
|
|
| 130 |
target_layers = [all_layers[visualization_layer_min-1]]
|
|
|
|
| 131 |
|
| 132 |
if model_name.split('-')[0] == "Janus":
|
| 133 |
gradcam = AttentionGuidedCAMJanus(vl_gpt, target_layers)
|
|
@@ -165,6 +165,26 @@ def multimodal_understanding(model_type,
|
|
| 165 |
|
| 166 |
cam.append(cam_i)
|
| 167 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 168 |
return answer, cam, input_text_decoded
|
| 169 |
|
| 170 |
|
|
@@ -235,8 +255,8 @@ def model_slider_change(model_type):
|
|
| 235 |
|
| 236 |
res = (
|
| 237 |
gr.Dropdown(choices=["Visualization only", "answer + visualization"], value="answer + visualization", label="response_type"),
|
| 238 |
-
gr.Slider(minimum=1, maximum=
|
| 239 |
-
gr.Slider(minimum=1, maximum=
|
| 240 |
gr.Dropdown(choices=["Language Model"], value="Language Model", label="focus"),
|
| 241 |
gr.Dropdown(choices=["GradCAM"], value="GradCAM", label="activation map type")
|
| 242 |
)
|
|
@@ -291,7 +311,7 @@ with gr.Blocks() as demo:
|
|
| 291 |
activation_map_output = gr.Gallery(label="activation Map", height=300, columns=1)
|
| 292 |
|
| 293 |
with gr.Column():
|
| 294 |
-
model_selector = gr.Dropdown(choices=["Clip", "ChartGemma-3B", "Janus-1B", "Janus-7B", "LLaVA-1.5-7B"], value="Clip", label="model")
|
| 295 |
response_type = gr.Dropdown(choices=["Visualization only"], value="Visualization only", label="response_type")
|
| 296 |
focus = gr.Dropdown(choices=["Visual Encoder"], value="Visual Encoder", label="focus")
|
| 297 |
activation_map_method = gr.Dropdown(choices=["GradCAM"], value="GradCAM", label="activation map type")
|
|
@@ -339,7 +359,8 @@ with gr.Blocks() as demo:
|
|
| 339 |
|
| 340 |
|
| 341 |
|
| 342 |
-
understanding_button = gr.Button("
|
|
|
|
| 343 |
understanding_output = gr.Textbox(label="Answer")
|
| 344 |
understanding_target_token_decoded_output = gr.Textbox(label="Target Token Decoded")
|
| 345 |
|
|
@@ -349,67 +370,79 @@ with gr.Blocks() as demo:
|
|
| 349 |
examples=[
|
| 350 |
|
| 351 |
[
|
|
|
|
| 352 |
"What was the price of a barrel of oil in February 2020?",
|
| 353 |
"images/LineChart.png"
|
| 354 |
],
|
| 355 |
|
| 356 |
[
|
|
|
|
| 357 |
"What is the average internet speed in Japan?",
|
| 358 |
"images/BarChart.png"
|
| 359 |
],
|
| 360 |
|
| 361 |
[
|
|
|
|
| 362 |
"What is the cost of peanuts in Seoul?",
|
| 363 |
"images/StackedBar.png"
|
| 364 |
],
|
| 365 |
|
| 366 |
-
[
|
|
|
|
| 367 |
"Which country has the lowest proportion of Gold medals?",
|
| 368 |
"images/Stacked100.png"
|
| 369 |
],
|
| 370 |
|
| 371 |
[
|
|
|
|
| 372 |
"What is the approximate global smartphone market share of Samsung?",
|
| 373 |
"images/PieChart.png"
|
| 374 |
],
|
| 375 |
|
| 376 |
-
[
|
|
|
|
| 377 |
"What distance have customers traveled in the taxi the most?",
|
| 378 |
"images/Histogram.png"
|
| 379 |
],
|
| 380 |
|
| 381 |
[
|
|
|
|
| 382 |
"True/False: There is a negative linear relationship between the height and the weight of the 85 males.",
|
| 383 |
"images/Scatterplot.png"
|
| 384 |
],
|
| 385 |
|
| 386 |
[
|
|
|
|
| 387 |
"What was the average price of pount of coffee beans in October 2019?",
|
| 388 |
"images/AreaChart.png"
|
| 389 |
],
|
| 390 |
|
| 391 |
[
|
|
|
|
| 392 |
"What was the ratio of girls named 'Isla' to girls named 'Amelia' in 2012 in the UK?",
|
| 393 |
"images/StackedArea.png"
|
| 394 |
],
|
| 395 |
|
| 396 |
[
|
|
|
|
| 397 |
"Which city's metro system has the largest number of stations?",
|
| 398 |
"images/BubbleChart.png"
|
| 399 |
],
|
| 400 |
|
| 401 |
[
|
|
|
|
| 402 |
"True/False: In 2020, the unemployment rate for Washington (WA) was higher than that of Wisconsin (WI).",
|
| 403 |
"images/Choropleth_New.png"
|
| 404 |
],
|
| 405 |
|
| 406 |
[
|
|
|
|
| 407 |
"True/False: eBay is nested in the Software category.",
|
| 408 |
"images/TreeMap.png"
|
| 409 |
]
|
| 410 |
|
| 411 |
],
|
| 412 |
-
inputs=[question_input, image_input],
|
| 413 |
)
|
| 414 |
|
| 415 |
|
|
@@ -418,7 +451,7 @@ with gr.Blocks() as demo:
|
|
| 418 |
understanding_button.click(
|
| 419 |
multimodal_understanding,
|
| 420 |
inputs=[model_selector, activation_map_method, visual_pooling_method, image_input, question_input, und_seed_input, top_p, temperature, target_token_idx,
|
| 421 |
-
visualization_layers_min, visualization_layers_max, focus, response_type],
|
| 422 |
outputs=[understanding_output, activation_map_output, understanding_target_token_decoded_output]
|
| 423 |
)
|
| 424 |
|
|
|
|
| 9 |
import numpy as np
|
| 10 |
import matplotlib.pyplot as plt
|
| 11 |
import gc
|
| 12 |
+
import os
|
| 13 |
import spaces
|
| 14 |
from PIL import Image
|
| 15 |
|
|
|
|
| 54 |
activation_map_method,
|
| 55 |
visual_pooling_method,
|
| 56 |
image, question, seed, top_p, temperature, target_token_idx,
|
| 57 |
+
visualization_layer_min, visualization_layer_max, focus, response_type, chart_type):
|
| 58 |
# Clear CUDA cache before generating
|
| 59 |
gc.collect()
|
| 60 |
if torch.cuda.is_available():
|
|
|
|
| 76 |
if activation_map_method == "GradCAM":
|
| 77 |
# Generate Grad-CAM
|
| 78 |
all_layers = [layer.layer_norm1 for layer in clip_utils.model.vision_model.encoder.layers]
|
| 79 |
+
|
| 80 |
+
if visualization_layer_min != visualization_layer_max:
|
| 81 |
target_layers = all_layers[visualization_layer_min-1 : visualization_layer_max-1]
|
| 82 |
else:
|
| 83 |
target_layers = [all_layers[visualization_layer_min-1]]
|
|
|
|
| 112 |
|
| 113 |
input_ids = prepare_inputs.input_ids[0].cpu().tolist()
|
| 114 |
input_ids_decoded = [tokenizer.decode([input_ids[i]]) for i in range(len(input_ids))]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 115 |
|
| 116 |
if activation_map_method == "GradCAM":
|
| 117 |
# target_layers = vl_gpt.vision_model.vision_tower.blocks
|
|
|
|
| 119 |
all_layers = [block.norm1 for block in vl_gpt.vision_model.vision_tower.blocks]
|
| 120 |
else:
|
| 121 |
all_layers = [layer.self_attn for layer in vl_gpt.language_model.model.layers]
|
| 122 |
+
|
| 123 |
+
print("layer values:", visualization_layer_min, visualization_layer_max)
|
| 124 |
+
if visualization_layer_min != visualization_layer_max:
|
| 125 |
+
print("multi layers")
|
| 126 |
+
target_layers = all_layers[visualization_layer_min-1 : visualization_layer_max]
|
| 127 |
else:
|
| 128 |
+
print("single layer")
|
| 129 |
target_layers = [all_layers[visualization_layer_min-1]]
|
| 130 |
+
|
| 131 |
|
| 132 |
if model_name.split('-')[0] == "Janus":
|
| 133 |
gradcam = AttentionGuidedCAMJanus(vl_gpt, target_layers)
|
|
|
|
| 165 |
|
| 166 |
cam.append(cam_i)
|
| 167 |
|
| 168 |
+
# Collect Results
|
| 169 |
+
RESULTS_ROOT = "./results"
|
| 170 |
+
FILES_ROOT = f"{RESULTS_ROOT}/{model_name}/{focus}/{chart_type}/layer{visualization_layer_min}-{visualization_layer_max}"
|
| 171 |
+
os.makedirs(FILES_ROOT, exist_ok=True)
|
| 172 |
+
if focus == "Visual Encoder":
|
| 173 |
+
cam[0].save(f"{FILES_ROOT}/{visual_pooling_method}.png")
|
| 174 |
+
else:
|
| 175 |
+
for i, cam_p in enumerate(cam):
|
| 176 |
+
cam_p.save(f"{FILES_ROOT}/{i}.png")
|
| 177 |
+
|
| 178 |
+
with open(f"{FILES_ROOT}/input_text_decoded.txt", "w") as f:
|
| 179 |
+
f.write(input_text_decoded)
|
| 180 |
+
f.close()
|
| 181 |
+
|
| 182 |
+
with open(f"{FILES_ROOT}/answer.txt", "w") as f:
|
| 183 |
+
f.write(answer)
|
| 184 |
+
f.close()
|
| 185 |
+
|
| 186 |
+
|
| 187 |
+
|
| 188 |
return answer, cam, input_text_decoded
|
| 189 |
|
| 190 |
|
|
|
|
| 255 |
|
| 256 |
res = (
|
| 257 |
gr.Dropdown(choices=["Visualization only", "answer + visualization"], value="answer + visualization", label="response_type"),
|
| 258 |
+
gr.Slider(minimum=1, maximum=language_model_best_layer, value=language_model_best_layer, step=1, label="visualization layers min"),
|
| 259 |
+
gr.Slider(minimum=1, maximum=language_model_best_layer, value=language_model_best_layer, step=1, label="visualization layers max"),
|
| 260 |
gr.Dropdown(choices=["Language Model"], value="Language Model", label="focus"),
|
| 261 |
gr.Dropdown(choices=["GradCAM"], value="GradCAM", label="activation map type")
|
| 262 |
)
|
|
|
|
| 311 |
activation_map_output = gr.Gallery(label="activation Map", height=300, columns=1)
|
| 312 |
|
| 313 |
with gr.Column():
|
| 314 |
+
model_selector = gr.Dropdown(choices=["Clip", "ChartGemma-3B", "Janus-Pro-1B", "Janus-Pro-7B", "LLaVA-1.5-7B"], value="Clip", label="model")
|
| 315 |
response_type = gr.Dropdown(choices=["Visualization only"], value="Visualization only", label="response_type")
|
| 316 |
focus = gr.Dropdown(choices=["Visual Encoder"], value="Visual Encoder", label="focus")
|
| 317 |
activation_map_method = gr.Dropdown(choices=["GradCAM"], value="GradCAM", label="activation map type")
|
|
|
|
| 359 |
|
| 360 |
|
| 361 |
|
| 362 |
+
understanding_button = gr.Button("Submit")
|
| 363 |
+
chart_type = gr.Textbox(label="Chart Type")
|
| 364 |
understanding_output = gr.Textbox(label="Answer")
|
| 365 |
understanding_target_token_decoded_output = gr.Textbox(label="Target Token Decoded")
|
| 366 |
|
|
|
|
| 370 |
examples=[
|
| 371 |
|
| 372 |
[
|
| 373 |
+
"LineChart",
|
| 374 |
"What was the price of a barrel of oil in February 2020?",
|
| 375 |
"images/LineChart.png"
|
| 376 |
],
|
| 377 |
|
| 378 |
[
|
| 379 |
+
"BarChart",
|
| 380 |
"What is the average internet speed in Japan?",
|
| 381 |
"images/BarChart.png"
|
| 382 |
],
|
| 383 |
|
| 384 |
[
|
| 385 |
+
"StackedBar",
|
| 386 |
"What is the cost of peanuts in Seoul?",
|
| 387 |
"images/StackedBar.png"
|
| 388 |
],
|
| 389 |
|
| 390 |
+
[
|
| 391 |
+
"100%StackedBar",
|
| 392 |
"Which country has the lowest proportion of Gold medals?",
|
| 393 |
"images/Stacked100.png"
|
| 394 |
],
|
| 395 |
|
| 396 |
[
|
| 397 |
+
"PieChart",
|
| 398 |
"What is the approximate global smartphone market share of Samsung?",
|
| 399 |
"images/PieChart.png"
|
| 400 |
],
|
| 401 |
|
| 402 |
+
[
|
| 403 |
+
"Histogram",
|
| 404 |
"What distance have customers traveled in the taxi the most?",
|
| 405 |
"images/Histogram.png"
|
| 406 |
],
|
| 407 |
|
| 408 |
[
|
| 409 |
+
"Scatterplot",
|
| 410 |
"True/False: There is a negative linear relationship between the height and the weight of the 85 males.",
|
| 411 |
"images/Scatterplot.png"
|
| 412 |
],
|
| 413 |
|
| 414 |
[
|
| 415 |
+
"AreaChart",
|
| 416 |
"What was the average price of pount of coffee beans in October 2019?",
|
| 417 |
"images/AreaChart.png"
|
| 418 |
],
|
| 419 |
|
| 420 |
[
|
| 421 |
+
"StackedArea",
|
| 422 |
"What was the ratio of girls named 'Isla' to girls named 'Amelia' in 2012 in the UK?",
|
| 423 |
"images/StackedArea.png"
|
| 424 |
],
|
| 425 |
|
| 426 |
[
|
| 427 |
+
"BubbleChart",
|
| 428 |
"Which city's metro system has the largest number of stations?",
|
| 429 |
"images/BubbleChart.png"
|
| 430 |
],
|
| 431 |
|
| 432 |
[
|
| 433 |
+
"Choropleth",
|
| 434 |
"True/False: In 2020, the unemployment rate for Washington (WA) was higher than that of Wisconsin (WI).",
|
| 435 |
"images/Choropleth_New.png"
|
| 436 |
],
|
| 437 |
|
| 438 |
[
|
| 439 |
+
"TreeMap",
|
| 440 |
"True/False: eBay is nested in the Software category.",
|
| 441 |
"images/TreeMap.png"
|
| 442 |
]
|
| 443 |
|
| 444 |
],
|
| 445 |
+
inputs=[chart_type, question_input, image_input],
|
| 446 |
)
|
| 447 |
|
| 448 |
|
|
|
|
| 451 |
understanding_button.click(
|
| 452 |
multimodal_understanding,
|
| 453 |
inputs=[model_selector, activation_map_method, visual_pooling_method, image_input, question_input, und_seed_input, top_p, temperature, target_token_idx,
|
| 454 |
+
visualization_layers_min, visualization_layers_max, focus, response_type, chart_type],
|
| 455 |
outputs=[understanding_output, activation_map_output, understanding_target_token_decoded_output]
|
| 456 |
)
|
| 457 |
|
demo/cam.py
CHANGED
|
@@ -247,14 +247,10 @@ class AttentionGuidedCAMJanus(AttentionGuidedCAM):
|
|
| 247 |
|
| 248 |
act = act.mean(dim=1)
|
| 249 |
|
| 250 |
-
|
| 251 |
# Compute mean of gradients
|
| 252 |
print("grad_shape:", grad.shape)
|
| 253 |
grad_weights = F.relu(grad.mean(dim=1))
|
| 254 |
|
| 255 |
-
|
| 256 |
-
# cam, _ = (act * grad_weights).max(dim=-1)
|
| 257 |
-
# cam = act * grad_weights
|
| 258 |
cam = act * grad_weights
|
| 259 |
print(cam.shape)
|
| 260 |
|
|
@@ -266,17 +262,12 @@ class AttentionGuidedCAMJanus(AttentionGuidedCAM):
|
|
| 266 |
|
| 267 |
# Normalize
|
| 268 |
cam_sum = F.relu(cam_sum)
|
| 269 |
-
# cam_sum = cam_sum - cam_sum.min()
|
| 270 |
-
# cam_sum = cam_sum / cam_sum.max()
|
| 271 |
|
| 272 |
# thresholding
|
| 273 |
cam_sum = cam_sum.to(torch.float32)
|
| 274 |
percentile = torch.quantile(cam_sum, 0.2) # Adjust threshold dynamically
|
| 275 |
cam_sum[cam_sum < percentile] = 0
|
| 276 |
|
| 277 |
-
# Reshape
|
| 278 |
-
# if visual_pooling_method == "CLS":
|
| 279 |
-
# cam_sum = cam_sum[0, 1:]
|
| 280 |
|
| 281 |
# cam_sum shape: [1, seq_len, seq_len]
|
| 282 |
cam_sum_lst = []
|
|
@@ -300,15 +291,6 @@ class AttentionGuidedCAMJanus(AttentionGuidedCAM):
|
|
| 300 |
|
| 301 |
return cam_sum_lst, grid_size, start
|
| 302 |
|
| 303 |
-
# Aggregate activations and gradients from ALL layers
|
| 304 |
-
|
| 305 |
-
|
| 306 |
-
|
| 307 |
-
|
| 308 |
-
|
| 309 |
-
|
| 310 |
-
|
| 311 |
-
|
| 312 |
|
| 313 |
|
| 314 |
class AttentionGuidedCAMLLaVA(AttentionGuidedCAM):
|
|
@@ -376,7 +358,6 @@ class AttentionGuidedCAMLLaVA(AttentionGuidedCAM):
|
|
| 376 |
self.gradients = [layer.get_attn_gradients() for layer in self.target_layers]
|
| 377 |
cam_sum = None
|
| 378 |
|
| 379 |
-
# Ver 2
|
| 380 |
for act, grad in zip(self.activations, self.gradients):
|
| 381 |
|
| 382 |
print("act shape", act.shape)
|
|
@@ -397,13 +378,6 @@ class AttentionGuidedCAMLLaVA(AttentionGuidedCAM):
|
|
| 397 |
cam_sum = F.relu(cam_sum)
|
| 398 |
cam_sum = cam_sum.to(torch.float32)
|
| 399 |
|
| 400 |
-
# thresholding
|
| 401 |
-
# percentile = torch.quantile(cam_sum, 0.4) # Adjust threshold dynamically
|
| 402 |
-
# cam_sum[cam_sum < percentile] = 0
|
| 403 |
-
|
| 404 |
-
# Reshape
|
| 405 |
-
# if visual_pooling_method == "CLS":
|
| 406 |
-
# cam_sum = cam_sum[0, 1:]
|
| 407 |
|
| 408 |
# cam_sum shape: [1, seq_len, seq_len]
|
| 409 |
cam_sum_lst = []
|
|
@@ -412,7 +386,7 @@ class AttentionGuidedCAMLLaVA(AttentionGuidedCAM):
|
|
| 412 |
for i in range(start_idx, cam_sum_raw.shape[1]):
|
| 413 |
cam_sum = cam_sum_raw[0, i, :] # shape: [1: seq_len]
|
| 414 |
|
| 415 |
-
cam_sum = cam_sum[image_mask].unsqueeze(0) # shape: [1,
|
| 416 |
print("cam_sum shape: ", cam_sum.shape)
|
| 417 |
num_patches = cam_sum.shape[-1] # Last dimension of CAM output
|
| 418 |
grid_size = int(num_patches ** 0.5)
|
|
@@ -430,19 +404,6 @@ class AttentionGuidedCAMLLaVA(AttentionGuidedCAM):
|
|
| 430 |
|
| 431 |
|
| 432 |
|
| 433 |
-
|
| 434 |
-
|
| 435 |
-
|
| 436 |
-
|
| 437 |
-
|
| 438 |
-
|
| 439 |
-
|
| 440 |
-
|
| 441 |
-
|
| 442 |
-
|
| 443 |
-
|
| 444 |
-
|
| 445 |
-
|
| 446 |
class AttentionGuidedCAMChartGemma(AttentionGuidedCAM):
|
| 447 |
def __init__(self, model, target_layers):
|
| 448 |
self.target_layers = target_layers
|
|
@@ -489,7 +450,6 @@ class AttentionGuidedCAMChartGemma(AttentionGuidedCAM):
|
|
| 489 |
self.model.zero_grad()
|
| 490 |
# print(outputs_raw)
|
| 491 |
loss = outputs_raw.logits.max(dim=-1).values.sum()
|
| 492 |
-
|
| 493 |
loss.backward()
|
| 494 |
|
| 495 |
# get image masks
|
|
@@ -507,75 +467,54 @@ class AttentionGuidedCAMChartGemma(AttentionGuidedCAM):
|
|
| 507 |
# Aggregate activations and gradients from ALL layers
|
| 508 |
self.activations = [layer.get_attn_map() for layer in self.target_layers]
|
| 509 |
self.gradients = [layer.get_attn_gradients() for layer in self.target_layers]
|
| 510 |
-
|
| 511 |
-
|
| 512 |
-
# for act, grad in zip(self.activations, self.gradients):
|
| 513 |
-
# # act = torch.sigmoid(act)
|
| 514 |
-
# print("act:", act)
|
| 515 |
-
# print(len(act))
|
| 516 |
-
# print("act_shape:", act.shape)
|
| 517 |
-
# # print("act1_shape:", act[1].shape)
|
| 518 |
-
|
| 519 |
-
# act = F.relu(act.mean(dim=1))
|
| 520 |
-
|
| 521 |
-
|
| 522 |
-
# # Compute mean of gradients
|
| 523 |
-
# print("grad:", grad)
|
| 524 |
-
# print(len(grad))
|
| 525 |
-
# print("grad_shape:", grad.shape)
|
| 526 |
-
# grad_weights = grad.mean(dim=1)
|
| 527 |
-
|
| 528 |
-
# print("act shape", act.shape)
|
| 529 |
-
# print("grad_weights shape", grad_weights.shape)
|
| 530 |
-
|
| 531 |
-
# cam = act * grad_weights
|
| 532 |
-
# # cam = act
|
| 533 |
-
# print(cam.shape)
|
| 534 |
-
|
| 535 |
-
# # Sum across all layers
|
| 536 |
-
# if cam_sum is None:
|
| 537 |
-
# cam_sum = cam
|
| 538 |
-
# else:
|
| 539 |
-
# cam_sum += cam
|
| 540 |
|
|
|
|
|
|
|
| 541 |
# Ver 2
|
| 542 |
for act, grad in zip(self.activations, self.gradients):
|
| 543 |
|
| 544 |
print("act shape", act.shape)
|
| 545 |
print("grad shape", grad.shape)
|
| 546 |
-
|
| 547 |
grad = F.relu(grad)
|
| 548 |
|
| 549 |
cam = act * grad # shape: [1, heads, seq_len, seq_len]
|
| 550 |
cam = cam.sum(dim=1) # shape: [1, seq_len, seq_len]
|
|
|
|
|
|
|
| 551 |
|
| 552 |
-
|
| 553 |
-
|
| 554 |
-
cam_sum = cam
|
| 555 |
-
else:
|
| 556 |
-
cam_sum += cam
|
| 557 |
|
| 558 |
-
|
| 559 |
-
cam_sum = cam_sum.to(torch.float32)
|
| 560 |
-
|
| 561 |
-
# cam_sum shape: [1, seq_len, seq_len]
|
| 562 |
cam_sum_lst = []
|
| 563 |
-
|
| 564 |
start_idx = last + 1
|
| 565 |
-
for i in range(start_idx,
|
| 566 |
-
cam_sum =
|
| 567 |
-
|
| 568 |
-
|
| 569 |
-
# cam_sum = (cam_sum - cam_sum_min) / (cam_sum_max - cam_sum_min)
|
| 570 |
-
cam_sum = cam_sum[image_mask].unsqueeze(0) # shape: [1, 1024]
|
| 571 |
-
print("cam_sum shape: ", cam_sum.shape)
|
| 572 |
-
num_patches = cam_sum.shape[-1] # Last dimension of CAM output
|
| 573 |
-
grid_size = int(num_patches ** 0.5)
|
| 574 |
-
print(f"Detected grid size: {grid_size}x{grid_size}")
|
| 575 |
|
| 576 |
-
|
| 577 |
-
|
| 578 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 579 |
cam_sum = (cam_sum - cam_sum.min()) / (cam_sum.max() - cam_sum.min())
|
| 580 |
cam_sum_lst.append(cam_sum)
|
| 581 |
|
|
@@ -604,7 +543,7 @@ def generate_gradcam(
|
|
| 604 |
alpha=0.5,
|
| 605 |
colormap=cv2.COLORMAP_JET,
|
| 606 |
aggregation='mean',
|
| 607 |
-
normalize=
|
| 608 |
):
|
| 609 |
"""
|
| 610 |
Generates a Grad-CAM heatmap overlay on top of the input image.
|
|
|
|
| 247 |
|
| 248 |
act = act.mean(dim=1)
|
| 249 |
|
|
|
|
| 250 |
# Compute mean of gradients
|
| 251 |
print("grad_shape:", grad.shape)
|
| 252 |
grad_weights = F.relu(grad.mean(dim=1))
|
| 253 |
|
|
|
|
|
|
|
|
|
|
| 254 |
cam = act * grad_weights
|
| 255 |
print(cam.shape)
|
| 256 |
|
|
|
|
| 262 |
|
| 263 |
# Normalize
|
| 264 |
cam_sum = F.relu(cam_sum)
|
|
|
|
|
|
|
| 265 |
|
| 266 |
# thresholding
|
| 267 |
cam_sum = cam_sum.to(torch.float32)
|
| 268 |
percentile = torch.quantile(cam_sum, 0.2) # Adjust threshold dynamically
|
| 269 |
cam_sum[cam_sum < percentile] = 0
|
| 270 |
|
|
|
|
|
|
|
|
|
|
| 271 |
|
| 272 |
# cam_sum shape: [1, seq_len, seq_len]
|
| 273 |
cam_sum_lst = []
|
|
|
|
| 291 |
|
| 292 |
return cam_sum_lst, grid_size, start
|
| 293 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 294 |
|
| 295 |
|
| 296 |
class AttentionGuidedCAMLLaVA(AttentionGuidedCAM):
|
|
|
|
| 358 |
self.gradients = [layer.get_attn_gradients() for layer in self.target_layers]
|
| 359 |
cam_sum = None
|
| 360 |
|
|
|
|
| 361 |
for act, grad in zip(self.activations, self.gradients):
|
| 362 |
|
| 363 |
print("act shape", act.shape)
|
|
|
|
| 378 |
cam_sum = F.relu(cam_sum)
|
| 379 |
cam_sum = cam_sum.to(torch.float32)
|
| 380 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 381 |
|
| 382 |
# cam_sum shape: [1, seq_len, seq_len]
|
| 383 |
cam_sum_lst = []
|
|
|
|
| 386 |
for i in range(start_idx, cam_sum_raw.shape[1]):
|
| 387 |
cam_sum = cam_sum_raw[0, i, :] # shape: [1: seq_len]
|
| 388 |
|
| 389 |
+
cam_sum = cam_sum[image_mask].unsqueeze(0) # shape: [1, img_seq_len]
|
| 390 |
print("cam_sum shape: ", cam_sum.shape)
|
| 391 |
num_patches = cam_sum.shape[-1] # Last dimension of CAM output
|
| 392 |
grid_size = int(num_patches ** 0.5)
|
|
|
|
| 404 |
|
| 405 |
|
| 406 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 407 |
class AttentionGuidedCAMChartGemma(AttentionGuidedCAM):
|
| 408 |
def __init__(self, model, target_layers):
|
| 409 |
self.target_layers = target_layers
|
|
|
|
| 450 |
self.model.zero_grad()
|
| 451 |
# print(outputs_raw)
|
| 452 |
loss = outputs_raw.logits.max(dim=-1).values.sum()
|
|
|
|
| 453 |
loss.backward()
|
| 454 |
|
| 455 |
# get image masks
|
|
|
|
| 467 |
# Aggregate activations and gradients from ALL layers
|
| 468 |
self.activations = [layer.get_attn_map() for layer in self.target_layers]
|
| 469 |
self.gradients = [layer.get_attn_gradients() for layer in self.target_layers]
|
| 470 |
+
print(f"layers shape: {len(self.target_layers)}")
|
| 471 |
+
print("activations & gradients shape", len(self.activations), len(self.gradients))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 472 |
|
| 473 |
+
cams = []
|
| 474 |
+
|
| 475 |
# Ver 2
|
| 476 |
for act, grad in zip(self.activations, self.gradients):
|
| 477 |
|
| 478 |
print("act shape", act.shape)
|
| 479 |
print("grad shape", grad.shape)
|
| 480 |
+
|
| 481 |
grad = F.relu(grad)
|
| 482 |
|
| 483 |
cam = act * grad # shape: [1, heads, seq_len, seq_len]
|
| 484 |
cam = cam.sum(dim=1) # shape: [1, seq_len, seq_len]
|
| 485 |
+
cam = cam.to(torch.float32).detach().cpu()
|
| 486 |
+
cams.append(cam)
|
| 487 |
|
| 488 |
+
# cam_sum = F.relu(cam_sum)
|
| 489 |
+
# cam_sum = cam_sum.to(torch.float32)
|
|
|
|
|
|
|
|
|
|
| 490 |
|
| 491 |
+
# cams shape: [layers, 1, seq_len, seq_len]
|
|
|
|
|
|
|
|
|
|
| 492 |
cam_sum_lst = []
|
| 493 |
+
|
| 494 |
start_idx = last + 1
|
| 495 |
+
for i in range(start_idx, cams[0].shape[1]):
|
| 496 |
+
cam_sum = None
|
| 497 |
+
for layer, cam_l in enumerate(cams):
|
| 498 |
+
cam_l_i = cam_l[0, i, :] # shape: [1: seq_len]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 499 |
|
| 500 |
+
cam_l_i = cam_l_i[image_mask].unsqueeze(0) # shape: [1, img_seq_len]
|
| 501 |
+
# print(f"layer: {layer}, token index: {i}")
|
| 502 |
+
# print("cam_sum shape: ", cam_l_i.shape)
|
| 503 |
+
num_patches = cam_l_i.shape[-1] # Last dimension of CAM output
|
| 504 |
+
grid_size = int(num_patches ** 0.5)
|
| 505 |
+
# print(f"Detected grid size: {grid_size}x{grid_size}")
|
| 506 |
+
|
| 507 |
+
# Fix the reshaping step dynamically
|
| 508 |
+
cam_reshaped = cam_l_i.view(grid_size, grid_size)
|
| 509 |
+
# print(f"max: {cam_reshaped.max()}, min: {cam_reshaped.min()}")
|
| 510 |
+
cam_normalized = (cam_reshaped - cam_reshaped.min()) / (cam_reshaped.max() - cam_reshaped.min())
|
| 511 |
+
if cam_sum == None:
|
| 512 |
+
cam_sum = cam_normalized
|
| 513 |
+
else:
|
| 514 |
+
cam_sum += cam_normalized
|
| 515 |
+
# print(f"normalized: max: {cam_normalized.max()}, min: {cam_normalized.min()}")
|
| 516 |
+
|
| 517 |
+
# print(f"sum: max: {cam_sum.max()}, min: {cam_sum.min()}")
|
| 518 |
cam_sum = (cam_sum - cam_sum.min()) / (cam_sum.max() - cam_sum.min())
|
| 519 |
cam_sum_lst.append(cam_sum)
|
| 520 |
|
|
|
|
| 543 |
alpha=0.5,
|
| 544 |
colormap=cv2.COLORMAP_JET,
|
| 545 |
aggregation='mean',
|
| 546 |
+
normalize=False
|
| 547 |
):
|
| 548 |
"""
|
| 549 |
Generates a Grad-CAM heatmap overlay on top of the input image.
|