File size: 21,797 Bytes
18d2806
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
# Open Source Model Licensed under the Apache License Version 2.0
# and Other Licenses of the Third-Party Components therein:
# The below Model in this distribution may have been modified by THL A29 Limited
# ("Tencent Modifications"). All Tencent Modifications are Copyright (C) 2024 THL A29 Limited.

# Copyright (C) 2024 THL A29 Limited, a Tencent company.  All rights reserved.
# The below software and/or models in this distribution may have been
# modified by THL A29 Limited ("Tencent Modifications").
# All Tencent Modifications are Copyright (C) THL A29 Limited.

# Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT
# except for the third-party components listed below.
# Hunyuan 3D does not impose any additional limitations beyond what is outlined
# in the repsective licenses of these third-party components.
# Users must comply with all terms and conditions of original licenses of these third-party
# components and must ensure that the usage of the third party components adheres to
# all relevant laws and regulations.

# For avoidance of doubts, Hunyuan 3D means the large language models and
# their software and algorithms, including trained model weights, parameters (including
# optimizer states), machine-learning model code, inference-enabling code, training-enabling code,
# fine-tuning enabling code and other elements of the foregoing made publicly available
# by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT.

from typing import Tuple, List, Union, Optional

import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange, repeat
from skimage import measure
from tqdm import tqdm


class FourierEmbedder(nn.Module):
    """The sin/cosine positional embedding. Given an input tensor `x` of shape [n_batch, ..., c_dim], it converts
    each feature dimension of `x[..., i]` into:
        [
            sin(x[..., i]),
            sin(f_1*x[..., i]),
            sin(f_2*x[..., i]),
            ...
            sin(f_N * x[..., i]),
            cos(x[..., i]),
            cos(f_1*x[..., i]),
            cos(f_2*x[..., i]),
            ...
            cos(f_N * x[..., i]),
            x[..., i]     # only present if include_input is True.
        ], here f_i is the frequency.

    Denote the space is [0 / num_freqs, 1 / num_freqs, 2 / num_freqs, 3 / num_freqs, ..., (num_freqs - 1) / num_freqs].
    If logspace is True, then the frequency f_i is [2^(0 / num_freqs), ..., 2^(i / num_freqs), ...];
    Otherwise, the frequencies are linearly spaced between [1.0, 2^(num_freqs - 1)].

    Args:
        num_freqs (int): the number of frequencies, default is 6;
        logspace (bool): If logspace is True, then the frequency f_i is [..., 2^(i / num_freqs), ...],
            otherwise, the frequencies are linearly spaced between [1.0, 2^(num_freqs - 1)];
        input_dim (int): the input dimension, default is 3;
        include_input (bool): include the input tensor or not, default is True.

    Attributes:
        frequencies (torch.Tensor): If logspace is True, then the frequency f_i is [..., 2^(i / num_freqs), ...],
                otherwise, the frequencies are linearly spaced between [1.0, 2^(num_freqs - 1);

        out_dim (int): the embedding size, if include_input is True, it is input_dim * (num_freqs * 2 + 1),
            otherwise, it is input_dim * num_freqs * 2.

    """

    def __init__(self,
                 num_freqs: int = 6,
                 logspace: bool = True,
                 input_dim: int = 3,
                 include_input: bool = True,
                 include_pi: bool = True) -> None:

        """The initialization"""

        super().__init__()

        if logspace:
            frequencies = 2.0 ** torch.arange(
                num_freqs,
                dtype=torch.float32
            )
        else:
            frequencies = torch.linspace(
                1.0,
                2.0 ** (num_freqs - 1),
                num_freqs,
                dtype=torch.float32
            )

        if include_pi:
            frequencies *= torch.pi

        self.register_buffer("frequencies", frequencies, persistent=False)
        self.include_input = include_input
        self.num_freqs = num_freqs

        self.out_dim = self.get_dims(input_dim)

    def get_dims(self, input_dim):
        temp = 1 if self.include_input or self.num_freqs == 0 else 0
        out_dim = input_dim * (self.num_freqs * 2 + temp)

        return out_dim

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        """ Forward process.

        Args:
            x: tensor of shape [..., dim]

        Returns:
            embedding: an embedding of `x` of shape [..., dim * (num_freqs * 2 + temp)]
                where temp is 1 if include_input is True and 0 otherwise.
        """

        if self.num_freqs > 0:
            embed = (x[..., None].contiguous() * self.frequencies).view(*x.shape[:-1], -1)
            if self.include_input:
                return torch.cat((x, embed.sin(), embed.cos()), dim=-1)
            else:
                return torch.cat((embed.sin(), embed.cos()), dim=-1)
        else:
            return x


class DropPath(nn.Module):
    """Drop paths (Stochastic Depth) per sample  (when applied in main path of residual blocks).
    """

    def __init__(self, drop_prob: float = 0., scale_by_keep: bool = True):
        super(DropPath, self).__init__()
        self.drop_prob = drop_prob
        self.scale_by_keep = scale_by_keep

    def forward(self, x):
        """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).

        This is the same as the DropConnect impl I created for EfficientNet, etc networks, however,
        the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
        See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for
        changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use
        'survival rate' as the argument.

        """
        if self.drop_prob == 0. or not self.training:
            return x
        keep_prob = 1 - self.drop_prob
        shape = (x.shape[0],) + (1,) * (x.ndim - 1)  # work with diff dim tensors, not just 2D ConvNets
        random_tensor = x.new_empty(shape).bernoulli_(keep_prob)
        if keep_prob > 0.0 and self.scale_by_keep:
            random_tensor.div_(keep_prob)
        return x * random_tensor

    def extra_repr(self):
        return f'drop_prob={round(self.drop_prob, 3):0.3f}'


class MLP(nn.Module):
    def __init__(
        self, *,
        width: int,
        output_width: int = None,
        drop_path_rate: float = 0.0
    ):
        super().__init__()
        self.width = width
        self.c_fc = nn.Linear(width, width * 4)
        self.c_proj = nn.Linear(width * 4, output_width if output_width is not None else width)
        self.gelu = nn.GELU()
        self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()

    def forward(self, x):
        return self.drop_path(self.c_proj(self.gelu(self.c_fc(x))))


class QKVMultiheadCrossAttention(nn.Module):
    def __init__(
        self,
        *,
        heads: int,
        n_data: Optional[int] = None,
        width=None,
        qk_norm=False,
        norm_layer=nn.LayerNorm
    ):
        super().__init__()
        self.heads = heads
        self.n_data = n_data
        self.q_norm = norm_layer(width // heads, elementwise_affine=True, eps=1e-6) if qk_norm else nn.Identity()
        self.k_norm = norm_layer(width // heads, elementwise_affine=True, eps=1e-6) if qk_norm else nn.Identity()

    def forward(self, q, kv):
        _, n_ctx, _ = q.shape
        bs, n_data, width = kv.shape
        attn_ch = width // self.heads // 2
        q = q.view(bs, n_ctx, self.heads, -1)
        kv = kv.view(bs, n_data, self.heads, -1)
        k, v = torch.split(kv, attn_ch, dim=-1)

        q = self.q_norm(q)
        k = self.k_norm(k)

        q, k, v = map(lambda t: rearrange(t, 'b n h d -> b h n d', h=self.heads), (q, k, v))
        out = F.scaled_dot_product_attention(q, k, v).transpose(1, 2).reshape(bs, n_ctx, -1)

        return out


class MultiheadCrossAttention(nn.Module):
    def __init__(
        self,
        *,
        width: int,
        heads: int,
        qkv_bias: bool = True,
        n_data: Optional[int] = None,
        data_width: Optional[int] = None,
        norm_layer=nn.LayerNorm,
        qk_norm: bool = False
    ):
        super().__init__()
        self.n_data = n_data
        self.width = width
        self.heads = heads
        self.data_width = width if data_width is None else data_width
        self.c_q = nn.Linear(width, width, bias=qkv_bias)
        self.c_kv = nn.Linear(self.data_width, width * 2, bias=qkv_bias)
        self.c_proj = nn.Linear(width, width)
        self.attention = QKVMultiheadCrossAttention(
            heads=heads,
            n_data=n_data,
            width=width,
            norm_layer=norm_layer,
            qk_norm=qk_norm
        )

    def forward(self, x, data):
        x = self.c_q(x)
        data = self.c_kv(data)
        x = self.attention(x, data)
        x = self.c_proj(x)
        return x


class ResidualCrossAttentionBlock(nn.Module):
    def __init__(
        self,
        *,
        n_data: Optional[int] = None,
        width: int,
        heads: int,
        data_width: Optional[int] = None,
        qkv_bias: bool = True,
        norm_layer=nn.LayerNorm,
        qk_norm: bool = False
    ):
        super().__init__()

        if data_width is None:
            data_width = width

        self.attn = MultiheadCrossAttention(
            n_data=n_data,
            width=width,
            heads=heads,
            data_width=data_width,
            qkv_bias=qkv_bias,
            norm_layer=norm_layer,
            qk_norm=qk_norm
        )
        self.ln_1 = norm_layer(width, elementwise_affine=True, eps=1e-6)
        self.ln_2 = norm_layer(data_width, elementwise_affine=True, eps=1e-6)
        self.ln_3 = norm_layer(width, elementwise_affine=True, eps=1e-6)
        self.mlp = MLP(width=width)

    def forward(self, x: torch.Tensor, data: torch.Tensor):
        x = x + self.attn(self.ln_1(x), self.ln_2(data))
        x = x + self.mlp(self.ln_3(x))
        return x


class QKVMultiheadAttention(nn.Module):
    def __init__(
        self,
        *,
        heads: int,
        n_ctx: int,
        width=None,
        qk_norm=False,
        norm_layer=nn.LayerNorm
    ):
        super().__init__()
        self.heads = heads
        self.n_ctx = n_ctx
        self.q_norm = norm_layer(width // heads, elementwise_affine=True, eps=1e-6) if qk_norm else nn.Identity()
        self.k_norm = norm_layer(width // heads, elementwise_affine=True, eps=1e-6) if qk_norm else nn.Identity()

    def forward(self, qkv):
        bs, n_ctx, width = qkv.shape
        attn_ch = width // self.heads // 3
        qkv = qkv.view(bs, n_ctx, self.heads, -1)
        q, k, v = torch.split(qkv, attn_ch, dim=-1)

        q = self.q_norm(q)
        k = self.k_norm(k)

        q, k, v = map(lambda t: rearrange(t, 'b n h d -> b h n d', h=self.heads), (q, k, v))
        out = F.scaled_dot_product_attention(q, k, v).transpose(1, 2).reshape(bs, n_ctx, -1)
        return out


class MultiheadAttention(nn.Module):
    def __init__(
        self,
        *,
        n_ctx: int,
        width: int,
        heads: int,
        qkv_bias: bool,
        norm_layer=nn.LayerNorm,
        qk_norm: bool = False,
        drop_path_rate: float = 0.0
    ):
        super().__init__()
        self.n_ctx = n_ctx
        self.width = width
        self.heads = heads
        self.c_qkv = nn.Linear(width, width * 3, bias=qkv_bias)
        self.c_proj = nn.Linear(width, width)
        self.attention = QKVMultiheadAttention(
            heads=heads,
            n_ctx=n_ctx,
            width=width,
            norm_layer=norm_layer,
            qk_norm=qk_norm
        )
        self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()

    def forward(self, x):
        x = self.c_qkv(x)
        x = self.attention(x)
        x = self.drop_path(self.c_proj(x))
        return x


class ResidualAttentionBlock(nn.Module):
    def __init__(
        self,
        *,
        n_ctx: int,
        width: int,
        heads: int,
        qkv_bias: bool = True,
        norm_layer=nn.LayerNorm,
        qk_norm: bool = False,
        drop_path_rate: float = 0.0,
    ):
        super().__init__()
        self.attn = MultiheadAttention(
            n_ctx=n_ctx,
            width=width,
            heads=heads,
            qkv_bias=qkv_bias,
            norm_layer=norm_layer,
            qk_norm=qk_norm,
            drop_path_rate=drop_path_rate
        )
        self.ln_1 = norm_layer(width, elementwise_affine=True, eps=1e-6)
        self.mlp = MLP(width=width, drop_path_rate=drop_path_rate)
        self.ln_2 = norm_layer(width, elementwise_affine=True, eps=1e-6)

    def forward(self, x: torch.Tensor):
        x = x + self.attn(self.ln_1(x))
        x = x + self.mlp(self.ln_2(x))
        return x


class Transformer(nn.Module):
    def __init__(
        self,
        *,
        n_ctx: int,
        width: int,
        layers: int,
        heads: int,
        qkv_bias: bool = True,
        norm_layer=nn.LayerNorm,
        qk_norm: bool = False,
        drop_path_rate: float = 0.0
    ):
        super().__init__()
        self.n_ctx = n_ctx
        self.width = width
        self.layers = layers
        self.resblocks = nn.ModuleList(
            [
                ResidualAttentionBlock(
                    n_ctx=n_ctx,
                    width=width,
                    heads=heads,
                    qkv_bias=qkv_bias,
                    norm_layer=norm_layer,
                    qk_norm=qk_norm,
                    drop_path_rate=drop_path_rate
                )
                for _ in range(layers)
            ]
        )

    def forward(self, x: torch.Tensor):
        for block in self.resblocks:
            x = block(x)
        return x


class CrossAttentionDecoder(nn.Module):

    def __init__(
        self,
        *,
        num_latents: int,
        out_channels: int,
        fourier_embedder: FourierEmbedder,
        width: int,
        heads: int,
        qkv_bias: bool = True,
        qk_norm: bool = False,
        label_type: str = "binary"
    ):
        super().__init__()

        self.fourier_embedder = fourier_embedder

        self.query_proj = nn.Linear(self.fourier_embedder.out_dim, width)

        self.cross_attn_decoder = ResidualCrossAttentionBlock(
            n_data=num_latents,
            width=width,
            heads=heads,
            qkv_bias=qkv_bias,
            qk_norm=qk_norm
        )

        self.ln_post = nn.LayerNorm(width)
        self.output_proj = nn.Linear(width, out_channels)
        self.label_type = label_type

    def forward(self, queries: torch.FloatTensor, latents: torch.FloatTensor):
        queries = self.query_proj(self.fourier_embedder(queries).to(latents.dtype))
        x = self.cross_attn_decoder(queries, latents)
        x = self.ln_post(x)
        occ = self.output_proj(x)
        return occ


def generate_dense_grid_points(bbox_min: np.ndarray,
                               bbox_max: np.ndarray,
                               octree_depth: int,
                               indexing: str = "ij",
                               octree_resolution: int = None,
                               ):
    length = bbox_max - bbox_min
    num_cells = np.exp2(octree_depth)
    if octree_resolution is not None:
        num_cells = octree_resolution

    x = np.linspace(bbox_min[0], bbox_max[0], int(num_cells) + 1, dtype=np.float32)
    y = np.linspace(bbox_min[1], bbox_max[1], int(num_cells) + 1, dtype=np.float32)
    z = np.linspace(bbox_min[2], bbox_max[2], int(num_cells) + 1, dtype=np.float32)
    [xs, ys, zs] = np.meshgrid(x, y, z, indexing=indexing)
    xyz = np.stack((xs, ys, zs), axis=-1)
    xyz = xyz.reshape(-1, 3)
    grid_size = [int(num_cells) + 1, int(num_cells) + 1, int(num_cells) + 1]

    return xyz, grid_size, length


def center_vertices(vertices):
    """Translate the vertices so that bounding box is centered at zero."""
    vert_min = vertices.min(dim=0)[0]
    vert_max = vertices.max(dim=0)[0]
    vert_center = 0.5 * (vert_min + vert_max)
    return vertices - vert_center


class Latent2MeshOutput:

    def __init__(self, mesh_v=None, mesh_f=None):
        self.mesh_v = mesh_v
        self.mesh_f = mesh_f


class ShapeVAE(nn.Module):
    def __init__(
        self,
        *,
        num_latents: int,
        embed_dim: int,
        width: int,
        heads: int,
        num_decoder_layers: int,
        num_freqs: int = 8,
        include_pi: bool = True,
        qkv_bias: bool = True,
        qk_norm: bool = False,
        label_type: str = "binary",
        drop_path_rate: float = 0.0,
        scale_factor: float = 1.0,
    ):
        super().__init__()
        self.fourier_embedder = FourierEmbedder(num_freqs=num_freqs, include_pi=include_pi)

        self.post_kl = nn.Linear(embed_dim, width)

        self.transformer = Transformer(
            n_ctx=num_latents,
            width=width,
            layers=num_decoder_layers,
            heads=heads,
            qkv_bias=qkv_bias,
            qk_norm=qk_norm,
            drop_path_rate=drop_path_rate
        )

        self.geo_decoder = CrossAttentionDecoder(
            fourier_embedder=self.fourier_embedder,
            out_channels=1,
            num_latents=num_latents,
            width=width,
            heads=heads,
            qkv_bias=qkv_bias,
            qk_norm=qk_norm,
            label_type=label_type,
        )

        self.scale_factor = scale_factor
        self.latent_shape = (num_latents, embed_dim)

    def forward(self, latents):
        latents = self.post_kl(latents)
        latents = self.transformer(latents)
        return latents

    @torch.no_grad()
    def latents2mesh(
        self,
        latents: torch.FloatTensor,
        bounds: Union[Tuple[float], List[float], float] = 1.1,
        octree_depth: int = 7,
        num_chunks: int = 10000,
        mc_level: float = -1 / 512,
        octree_resolution: int = None,
        mc_algo: str = 'dmc',
    ):
        device = latents.device

        # 1. generate query points
        if isinstance(bounds, float):
            bounds = [-bounds, -bounds, -bounds, bounds, bounds, bounds]
        bbox_min = np.array(bounds[0:3])
        bbox_max = np.array(bounds[3:6])
        bbox_size = bbox_max - bbox_min
        xyz_samples, grid_size, length = generate_dense_grid_points(
            bbox_min=bbox_min,
            bbox_max=bbox_max,
            octree_depth=octree_depth,
            octree_resolution=octree_resolution,
            indexing="ij"
        )
        xyz_samples = torch.FloatTensor(xyz_samples)

        # 2. latents to 3d volume
        batch_logits = []
        batch_size = latents.shape[0]
        for start in tqdm(range(0, xyz_samples.shape[0], num_chunks),
                          desc=f"MC Level {mc_level} Implicit Function:"):
            queries = xyz_samples[start: start + num_chunks, :].to(device)
            queries = queries.half()
            batch_queries = repeat(queries, "p c -> b p c", b=batch_size)

            logits = self.geo_decoder(batch_queries.to(latents.dtype), latents)
            if mc_level == -1:
                mc_level = 0
                logits = torch.sigmoid(logits) * 2 - 1
                print(f'Training with soft labels, inference with sigmoid and marching cubes level 0.')
            batch_logits.append(logits)
        grid_logits = torch.cat(batch_logits, dim=1)
        grid_logits = grid_logits.view((batch_size, grid_size[0], grid_size[1], grid_size[2])).float()

        # 3. extract surface
        outputs = []
        for i in range(batch_size):
            try:
                if mc_algo == 'mc':
                    vertices, faces, normals, _ = measure.marching_cubes(
                        grid_logits[i].cpu().numpy(),
                        mc_level,
                        method="lewiner"
                    )
                    vertices = vertices / grid_size * bbox_size + bbox_min
                elif mc_algo == 'dmc':
                    if not hasattr(self, 'dmc'):
                        try:
                            from diso import DiffDMC
                        except:
                            raise ImportError("Please install diso via `pip install diso`, or set mc_algo to 'mc'")
                        self.dmc = DiffDMC(dtype=torch.float32).to(device)
                    octree_resolution = 2 ** octree_depth if octree_resolution is None else octree_resolution
                    sdf = -grid_logits[i] / octree_resolution
                    verts, faces = self.dmc(sdf, deform=None, return_quads=False, normalize=True)
                    verts = center_vertices(verts)
                    vertices = verts.detach().cpu().numpy()
                    faces = faces.detach().cpu().numpy()[:, ::-1]
                else:
                    raise ValueError(f"mc_algo {mc_algo} not supported.")

                outputs.append(
                    Latent2MeshOutput(
                        mesh_v=vertices.astype(np.float32),
                        mesh_f=np.ascontiguousarray(faces)
                    )
                )

            except ValueError:
                outputs.append(None)
            except RuntimeError:
                outputs.append(None)

        return outputs