John Smith commited on
Commit
6bd508a
·
verified ·
1 Parent(s): 7149264

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +34 -59
app.py CHANGED
@@ -1,63 +1,38 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
- """
43
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
44
- """
45
- demo = gr.ChatInterface(
46
- respond,
47
- additional_inputs=[
48
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
49
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
50
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
51
- gr.Slider(
52
- minimum=0.1,
53
- maximum=1.0,
54
- value=0.95,
55
- step=0.05,
56
- label="Top-p (nucleus sampling)",
57
- ),
58
  ],
 
59
  )
60
 
61
-
62
- if __name__ == "__main__":
63
- demo.launch()
 
1
  import gradio as gr
2
+ from transformers import AutoTokenizer, AutoModelForCausalLM
3
+ import torch
4
+
5
+ # Load model and tokenizer
6
+ model_name = "meta-llama/Llama-2-7b-chat-hf"
7
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
8
+ model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
9
+
10
+ def generate_response(message, history):
11
+ # Format the input with chat history
12
+ prompt = "".join([f"Human: {h[0]}\nAssistant: {h[1]}\n" for h in history])
13
+ prompt += f"Human: {message}\nAssistant:"
14
+
15
+ # Tokenize and generate
16
+ inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
17
+ outputs = model.generate(**inputs, max_new_tokens=1000, temperature=0.7, do_sample=True)
18
+ response = tokenizer.decode(outputs[0], skip_special_tokens=True)
19
+
20
+ # Extract only the assistant's response
21
+ assistant_response = response.split("Assistant:")[-1].strip()
22
+ return assistant_response
23
+
24
+ # Create the Gradio interface
25
+ iface = gr.ChatInterface(
26
+ generate_response,
27
+ title="Llama-2-7b Chat Interface",
28
+ description="Chat with the Llama-2-7b model. Type your message and press Enter.",
29
+ examples=[
30
+ "What is the capital of France?",
31
+ "Explain quantum computing in simple terms.",
32
+ "Write a short poem about artificial intelligence."
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33
  ],
34
+ cache_examples=False,
35
  )
36
 
37
+ # Launch the interface
38
+ iface.launch()