John Smith
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,63 +1,38 @@
|
|
1 |
import gradio as gr
|
2 |
-
from
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
""
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
def
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
)
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
stream=True,
|
34 |
-
temperature=temperature,
|
35 |
-
top_p=top_p,
|
36 |
-
):
|
37 |
-
token = message.choices[0].delta.content
|
38 |
-
|
39 |
-
response += token
|
40 |
-
yield response
|
41 |
-
|
42 |
-
"""
|
43 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
44 |
-
"""
|
45 |
-
demo = gr.ChatInterface(
|
46 |
-
respond,
|
47 |
-
additional_inputs=[
|
48 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
49 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
50 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
51 |
-
gr.Slider(
|
52 |
-
minimum=0.1,
|
53 |
-
maximum=1.0,
|
54 |
-
value=0.95,
|
55 |
-
step=0.05,
|
56 |
-
label="Top-p (nucleus sampling)",
|
57 |
-
),
|
58 |
],
|
|
|
59 |
)
|
60 |
|
61 |
-
|
62 |
-
|
63 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
+
import torch
|
4 |
+
|
5 |
+
# Load model and tokenizer
|
6 |
+
model_name = "meta-llama/Llama-2-7b-chat-hf"
|
7 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
8 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
|
9 |
+
|
10 |
+
def generate_response(message, history):
|
11 |
+
# Format the input with chat history
|
12 |
+
prompt = "".join([f"Human: {h[0]}\nAssistant: {h[1]}\n" for h in history])
|
13 |
+
prompt += f"Human: {message}\nAssistant:"
|
14 |
+
|
15 |
+
# Tokenize and generate
|
16 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
17 |
+
outputs = model.generate(**inputs, max_new_tokens=1000, temperature=0.7, do_sample=True)
|
18 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
19 |
+
|
20 |
+
# Extract only the assistant's response
|
21 |
+
assistant_response = response.split("Assistant:")[-1].strip()
|
22 |
+
return assistant_response
|
23 |
+
|
24 |
+
# Create the Gradio interface
|
25 |
+
iface = gr.ChatInterface(
|
26 |
+
generate_response,
|
27 |
+
title="Llama-2-7b Chat Interface",
|
28 |
+
description="Chat with the Llama-2-7b model. Type your message and press Enter.",
|
29 |
+
examples=[
|
30 |
+
"What is the capital of France?",
|
31 |
+
"Explain quantum computing in simple terms.",
|
32 |
+
"Write a short poem about artificial intelligence."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
],
|
34 |
+
cache_examples=False,
|
35 |
)
|
36 |
|
37 |
+
# Launch the interface
|
38 |
+
iface.launch()
|
|