Upload loaders.py with huggingface_hub
Browse files- loaders.py +97 -27
loaders.py
CHANGED
|
@@ -1,6 +1,8 @@
|
|
|
|
|
| 1 |
import itertools
|
| 2 |
-
import logging
|
| 3 |
import os
|
|
|
|
|
|
|
| 4 |
from tempfile import TemporaryDirectory
|
| 5 |
from typing import Dict, Mapping, Optional, Sequence, Union
|
| 6 |
|
|
@@ -8,11 +10,14 @@ import pandas as pd
|
|
| 8 |
from datasets import load_dataset as hf_load_dataset
|
| 9 |
from tqdm import tqdm
|
| 10 |
|
|
|
|
| 11 |
from .operator import SourceOperator
|
| 12 |
from .stream import MultiStream, Stream
|
| 13 |
|
|
|
|
| 14 |
try:
|
| 15 |
import ibm_boto3
|
|
|
|
| 16 |
# from ibm_botocore.client import ClientError
|
| 17 |
|
| 18 |
ibm_boto3_available = True
|
|
@@ -40,31 +45,35 @@ class LoadHF(Loader):
|
|
| 40 |
Union[str, Sequence[str], Mapping[str, Union[str, Sequence[str]]]]
|
| 41 |
] = None
|
| 42 |
streaming: bool = True
|
| 43 |
-
cached = False
|
| 44 |
|
| 45 |
def process(self):
|
| 46 |
try:
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
|
|
|
|
|
|
| 55 |
if self.split is not None:
|
| 56 |
dataset = {self.split: dataset}
|
| 57 |
except (
|
| 58 |
NotImplementedError
|
| 59 |
): # streaming is not supported for zipped files so we load without streaming
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
|
|
|
|
|
|
|
|
|
| 68 |
if self.split is None:
|
| 69 |
for split in dataset.keys():
|
| 70 |
dataset[split] = dataset[split].to_iterable_dataset()
|
|
@@ -92,16 +101,55 @@ class LoadCSV(Loader):
|
|
| 92 |
)
|
| 93 |
|
| 94 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 95 |
class LoadFromIBMCloud(Loader):
|
| 96 |
endpoint_url_env: str
|
| 97 |
aws_access_key_id_env: str
|
| 98 |
aws_secret_access_key_env: str
|
| 99 |
bucket_name: str
|
| 100 |
data_dir: str = None
|
| 101 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 102 |
|
| 103 |
def _download_from_cos(self, cos, bucket_name, item_name, local_file):
|
| 104 |
-
|
| 105 |
try:
|
| 106 |
response = cos.Object(bucket_name, item_name).get()
|
| 107 |
size = response["ContentLength"]
|
|
@@ -120,7 +168,7 @@ class LoadFromIBMCloud(Loader):
|
|
| 120 |
for line in first_lines:
|
| 121 |
downloaded_file.write(line)
|
| 122 |
downloaded_file.write(b"\n")
|
| 123 |
-
|
| 124 |
f"\nDownload successful limited to {self.loader_limit} lines"
|
| 125 |
)
|
| 126 |
return
|
|
@@ -134,7 +182,7 @@ class LoadFromIBMCloud(Loader):
|
|
| 134 |
cos.Bucket(bucket_name).download_file(
|
| 135 |
item_name, local_file, Callback=upload_progress
|
| 136 |
)
|
| 137 |
-
|
| 138 |
except Exception as e:
|
| 139 |
raise Exception(
|
| 140 |
f"Unabled to download {item_name} in {bucket_name}", e
|
|
@@ -145,6 +193,11 @@ class LoadFromIBMCloud(Loader):
|
|
| 145 |
self.endpoint_url = os.getenv(self.endpoint_url_env)
|
| 146 |
self.aws_access_key_id = os.getenv(self.aws_access_key_id_env)
|
| 147 |
self.aws_secret_access_key = os.getenv(self.aws_secret_access_key_env)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 148 |
|
| 149 |
def verify(self):
|
| 150 |
super().verify()
|
|
@@ -166,9 +219,20 @@ class LoadFromIBMCloud(Loader):
|
|
| 166 |
aws_secret_access_key=self.aws_secret_access_key,
|
| 167 |
endpoint_url=self.endpoint_url,
|
| 168 |
)
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 172 |
# Build object key based on parameters. Slash character is not
|
| 173 |
# allowed to be part of object key in IBM COS.
|
| 174 |
object_key = (
|
|
@@ -177,8 +241,14 @@ class LoadFromIBMCloud(Loader):
|
|
| 177 |
else data_file
|
| 178 |
)
|
| 179 |
self._download_from_cos(
|
| 180 |
-
cos, self.bucket_name, object_key,
|
| 181 |
)
|
| 182 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 183 |
|
| 184 |
return MultiStream.from_iterables(dataset)
|
|
|
|
| 1 |
+
import importlib
|
| 2 |
import itertools
|
|
|
|
| 3 |
import os
|
| 4 |
+
import tempfile
|
| 5 |
+
from pathlib import Path
|
| 6 |
from tempfile import TemporaryDirectory
|
| 7 |
from typing import Dict, Mapping, Optional, Sequence, Union
|
| 8 |
|
|
|
|
| 10 |
from datasets import load_dataset as hf_load_dataset
|
| 11 |
from tqdm import tqdm
|
| 12 |
|
| 13 |
+
from .logging_utils import get_logger
|
| 14 |
from .operator import SourceOperator
|
| 15 |
from .stream import MultiStream, Stream
|
| 16 |
|
| 17 |
+
logger = get_logger()
|
| 18 |
try:
|
| 19 |
import ibm_boto3
|
| 20 |
+
|
| 21 |
# from ibm_botocore.client import ClientError
|
| 22 |
|
| 23 |
ibm_boto3_available = True
|
|
|
|
| 45 |
Union[str, Sequence[str], Mapping[str, Union[str, Sequence[str]]]]
|
| 46 |
] = None
|
| 47 |
streaming: bool = True
|
|
|
|
| 48 |
|
| 49 |
def process(self):
|
| 50 |
try:
|
| 51 |
+
with tempfile.TemporaryDirectory() as dir_to_be_deleted:
|
| 52 |
+
dataset = hf_load_dataset(
|
| 53 |
+
self.path,
|
| 54 |
+
name=self.name,
|
| 55 |
+
data_dir=self.data_dir,
|
| 56 |
+
data_files=self.data_files,
|
| 57 |
+
streaming=self.streaming,
|
| 58 |
+
cache_dir=None if self.streaming else dir_to_be_deleted,
|
| 59 |
+
split=self.split,
|
| 60 |
+
)
|
| 61 |
if self.split is not None:
|
| 62 |
dataset = {self.split: dataset}
|
| 63 |
except (
|
| 64 |
NotImplementedError
|
| 65 |
): # streaming is not supported for zipped files so we load without streaming
|
| 66 |
+
with tempfile.TemporaryDirectory() as dir_to_be_deleted:
|
| 67 |
+
dataset = hf_load_dataset(
|
| 68 |
+
self.path,
|
| 69 |
+
name=self.name,
|
| 70 |
+
data_dir=self.data_dir,
|
| 71 |
+
data_files=self.data_files,
|
| 72 |
+
streaming=False,
|
| 73 |
+
keep_in_memory=True,
|
| 74 |
+
cache_dir=dir_to_be_deleted,
|
| 75 |
+
split=self.split,
|
| 76 |
+
)
|
| 77 |
if self.split is None:
|
| 78 |
for split in dataset.keys():
|
| 79 |
dataset[split] = dataset[split].to_iterable_dataset()
|
|
|
|
| 101 |
)
|
| 102 |
|
| 103 |
|
| 104 |
+
class MissingKaggleCredentialsError(ValueError):
|
| 105 |
+
pass
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
# TODO write how to obtain kaggle credentials
|
| 109 |
+
class LoadFromKaggle(Loader):
|
| 110 |
+
url: str
|
| 111 |
+
|
| 112 |
+
def verify(self):
|
| 113 |
+
super().verify()
|
| 114 |
+
if importlib.util.find_spec("opendatasets") is None:
|
| 115 |
+
raise ImportError(
|
| 116 |
+
"Please install opendatasets in order to use the LoadFromKaggle loader (using `pip install opendatasets`) "
|
| 117 |
+
)
|
| 118 |
+
if not os.path.isfile("kaggle.json"):
|
| 119 |
+
raise MissingKaggleCredentialsError(
|
| 120 |
+
"Please obtain kaggle credentials https://christianjmills.com/posts/kaggle-obtain-api-key-tutorial/ and save them to local ./kaggle.json file"
|
| 121 |
+
)
|
| 122 |
+
|
| 123 |
+
def prepare(self):
|
| 124 |
+
super().prepare()
|
| 125 |
+
from opendatasets import download
|
| 126 |
+
|
| 127 |
+
self.downloader = download
|
| 128 |
+
|
| 129 |
+
def process(self):
|
| 130 |
+
with TemporaryDirectory() as temp_directory:
|
| 131 |
+
self.downloader(self.url, temp_directory)
|
| 132 |
+
dataset = hf_load_dataset(temp_directory, streaming=False)
|
| 133 |
+
|
| 134 |
+
return MultiStream.from_iterables(dataset)
|
| 135 |
+
|
| 136 |
+
|
| 137 |
class LoadFromIBMCloud(Loader):
|
| 138 |
endpoint_url_env: str
|
| 139 |
aws_access_key_id_env: str
|
| 140 |
aws_secret_access_key_env: str
|
| 141 |
bucket_name: str
|
| 142 |
data_dir: str = None
|
| 143 |
+
|
| 144 |
+
# Can be either:
|
| 145 |
+
# 1. a list of file names, the split of each file is determined by the file name pattern
|
| 146 |
+
# 2. Mapping: split -> file_name, e.g. {"test" : "test.json", "train": "train.json"}
|
| 147 |
+
# 3. Mapping: split -> file_names, e.g. {"test" : ["test1.json", "test2.json"], "train": ["train.json"]}
|
| 148 |
+
data_files: Union[Sequence[str], Mapping[str, Union[str, Sequence[str]]]]
|
| 149 |
+
caching: bool = True
|
| 150 |
|
| 151 |
def _download_from_cos(self, cos, bucket_name, item_name, local_file):
|
| 152 |
+
logger.info(f"Downloading {item_name} from {bucket_name} COS")
|
| 153 |
try:
|
| 154 |
response = cos.Object(bucket_name, item_name).get()
|
| 155 |
size = response["ContentLength"]
|
|
|
|
| 168 |
for line in first_lines:
|
| 169 |
downloaded_file.write(line)
|
| 170 |
downloaded_file.write(b"\n")
|
| 171 |
+
logger.info(
|
| 172 |
f"\nDownload successful limited to {self.loader_limit} lines"
|
| 173 |
)
|
| 174 |
return
|
|
|
|
| 182 |
cos.Bucket(bucket_name).download_file(
|
| 183 |
item_name, local_file, Callback=upload_progress
|
| 184 |
)
|
| 185 |
+
logger.info("\nDownload Successful")
|
| 186 |
except Exception as e:
|
| 187 |
raise Exception(
|
| 188 |
f"Unabled to download {item_name} in {bucket_name}", e
|
|
|
|
| 193 |
self.endpoint_url = os.getenv(self.endpoint_url_env)
|
| 194 |
self.aws_access_key_id = os.getenv(self.aws_access_key_id_env)
|
| 195 |
self.aws_secret_access_key = os.getenv(self.aws_secret_access_key_env)
|
| 196 |
+
root_dir = os.getenv("UNITXT_IBM_COS_CACHE", None) or os.getcwd()
|
| 197 |
+
self.cache_dir = os.path.join(root_dir, "ibmcos_datasets")
|
| 198 |
+
|
| 199 |
+
if not os.path.exists(self.cache_dir):
|
| 200 |
+
Path(self.cache_dir).mkdir(parents=True, exist_ok=True)
|
| 201 |
|
| 202 |
def verify(self):
|
| 203 |
super().verify()
|
|
|
|
| 219 |
aws_secret_access_key=self.aws_secret_access_key,
|
| 220 |
endpoint_url=self.endpoint_url,
|
| 221 |
)
|
| 222 |
+
local_dir = os.path.join(self.cache_dir, self.bucket_name, self.data_dir)
|
| 223 |
+
if not os.path.exists(local_dir):
|
| 224 |
+
Path(local_dir).mkdir(parents=True, exist_ok=True)
|
| 225 |
+
|
| 226 |
+
if isinstance(self.data_files, Mapping):
|
| 227 |
+
data_files_names = list(self.data_files.values())
|
| 228 |
+
if not isinstance(data_files_names[0], str):
|
| 229 |
+
data_files_names = list(itertools.chain(*data_files_names))
|
| 230 |
+
else:
|
| 231 |
+
data_files_names = self.data_files
|
| 232 |
+
|
| 233 |
+
for data_file in data_files_names:
|
| 234 |
+
local_file = os.path.join(local_dir, data_file)
|
| 235 |
+
if not self.caching or not os.path.exists(local_file):
|
| 236 |
# Build object key based on parameters. Slash character is not
|
| 237 |
# allowed to be part of object key in IBM COS.
|
| 238 |
object_key = (
|
|
|
|
| 241 |
else data_file
|
| 242 |
)
|
| 243 |
self._download_from_cos(
|
| 244 |
+
cos, self.bucket_name, object_key, local_dir + "/" + data_file
|
| 245 |
)
|
| 246 |
+
|
| 247 |
+
if isinstance(self.data_files, list):
|
| 248 |
+
dataset = hf_load_dataset(local_dir, streaming=False)
|
| 249 |
+
else:
|
| 250 |
+
dataset = hf_load_dataset(
|
| 251 |
+
local_dir, streaming=False, data_files=self.data_files
|
| 252 |
+
)
|
| 253 |
|
| 254 |
return MultiStream.from_iterables(dataset)
|