Upload folder using huggingface_hub
Browse files- augmentors.py +3 -6
- image_operators.py +12 -0
- inference.py +1381 -426
- llm_as_judge.py +14 -2
- loaders.py +9 -9
- metrics.py +7 -0
- operators.py +15 -8
- settings_utils.py +1 -1
- standard.py +6 -9
- task.py +23 -19
- text_utils.py +2 -1
- version.py +1 -1
augmentors.py
CHANGED
|
@@ -49,7 +49,7 @@ class TextAugmentor(TypeDependentAugmentor):
|
|
| 49 |
augmented_type = Text
|
| 50 |
|
| 51 |
|
| 52 |
-
class NullAugmentor(
|
| 53 |
"""Does not change the input string."""
|
| 54 |
|
| 55 |
def process_value(self, value: Any) -> Any:
|
|
@@ -83,12 +83,9 @@ class AugmentPrefixSuffix(TextAugmentor):
|
|
| 83 |
r"""Augments the input by prepending and appending randomly selected (typically, whitespace) patterns.
|
| 84 |
|
| 85 |
Args:
|
| 86 |
-
prefixes, suffixes (list or dict) : the potential (typically, whitespace)
|
| 87 |
-
The dictionary version allows the specification relative weights for the different patterns.
|
| 88 |
prefix_len, suffix_len (positive int) : The added prefix or suffix will be of a certain length.
|
| 89 |
-
remove_existing_whitespaces : Clean any existing leading and trailing whitespaces.
|
| 90 |
-
The strings made of repetitions of the selected pattern(s) are then prepended and/or appended to the potentially
|
| 91 |
-
trimmed input.
|
| 92 |
If only either just prefixes or just suffixes are needed, set the other to None.
|
| 93 |
|
| 94 |
Examples:
|
|
|
|
| 49 |
augmented_type = Text
|
| 50 |
|
| 51 |
|
| 52 |
+
class NullAugmentor(TaskInputsAugmentor):
|
| 53 |
"""Does not change the input string."""
|
| 54 |
|
| 55 |
def process_value(self, value: Any) -> Any:
|
|
|
|
| 83 |
r"""Augments the input by prepending and appending randomly selected (typically, whitespace) patterns.
|
| 84 |
|
| 85 |
Args:
|
| 86 |
+
prefixes, suffixes (list or dict) : the potential patterns (typically, whitespace) to select from. The dictionary version allows the specification relative weights for the different patterns.
|
|
|
|
| 87 |
prefix_len, suffix_len (positive int) : The added prefix or suffix will be of a certain length.
|
| 88 |
+
remove_existing_whitespaces : Clean any existing leading and trailing whitespaces. The strings made of repetitions of the selected pattern(s) are then prepended and/or appended to the potentially trimmed input.
|
|
|
|
|
|
|
| 89 |
If only either just prefixes or just suffixes are needed, set the other to None.
|
| 90 |
|
| 91 |
Examples:
|
image_operators.py
CHANGED
|
@@ -93,6 +93,18 @@ def extract_images(text, instance):
|
|
| 93 |
return images
|
| 94 |
|
| 95 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
class DecodeImage(FieldOperator, PillowMixin):
|
| 97 |
def process_value(self, value: str) -> Any:
|
| 98 |
image_data = base64.b64decode(value)
|
|
|
|
| 93 |
return images
|
| 94 |
|
| 95 |
|
| 96 |
+
class EncodeImageToString(FieldOperator):
|
| 97 |
+
image_format: str = "JPEG"
|
| 98 |
+
|
| 99 |
+
def encode_image_to_base64(self, image):
|
| 100 |
+
buffer = io.BytesIO()
|
| 101 |
+
image.save(buffer, format=self.image_format)
|
| 102 |
+
return base64.b64encode(buffer.getvalue()).decode("utf-8")
|
| 103 |
+
|
| 104 |
+
def process_value(self, value: Any) -> Any:
|
| 105 |
+
return {"image": self.encode_image_to_base64(value)}
|
| 106 |
+
|
| 107 |
+
|
| 108 |
class DecodeImage(FieldOperator, PillowMixin):
|
| 109 |
def process_value(self, value: str) -> Any:
|
| 110 |
image_data = base64.b64decode(value)
|
inference.py
CHANGED
|
@@ -9,7 +9,18 @@ import sys
|
|
| 9 |
import time
|
| 10 |
import uuid
|
| 11 |
from collections import Counter
|
| 12 |
-
from typing import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
|
| 14 |
from datasets import DatasetDict
|
| 15 |
from tqdm import tqdm, trange
|
|
@@ -19,11 +30,12 @@ from .artifact import Artifact
|
|
| 19 |
from .dataclass import InternalField, NonPositionalField
|
| 20 |
from .deprecation_utils import deprecation
|
| 21 |
from .error_utils import UnitxtError
|
| 22 |
-
from .image_operators import data_url_to_image, extract_images
|
| 23 |
from .logging_utils import get_logger
|
| 24 |
from .operator import PackageRequirementsMixin
|
| 25 |
from .operators import ArtifactFetcherMixin
|
| 26 |
from .settings_utils import get_constants, get_settings
|
|
|
|
| 27 |
|
| 28 |
constants = get_constants()
|
| 29 |
settings = get_settings()
|
|
@@ -67,6 +79,9 @@ class TextGenerationInferenceOutput:
|
|
| 67 |
|
| 68 |
input_tokens (int) : number of input tokens to the model.
|
| 69 |
output_tokens (int) : number of output tokens to the model.
|
|
|
|
|
|
|
|
|
|
| 70 |
model_name (str): the model_name as kept in the InferenceEngine.
|
| 71 |
inference_type (str): The label stating the type of the InferenceEngine.
|
| 72 |
"""
|
|
@@ -74,6 +89,9 @@ class TextGenerationInferenceOutput:
|
|
| 74 |
prediction: Union[str, List[Dict[str, Any]]]
|
| 75 |
input_tokens: Optional[int] = None
|
| 76 |
output_tokens: Optional[int] = None
|
|
|
|
|
|
|
|
|
|
| 77 |
model_name: Optional[str] = None
|
| 78 |
inference_type: Optional[str] = None
|
| 79 |
|
|
@@ -152,6 +170,10 @@ class InferenceEngine(Artifact):
|
|
| 152 |
if param_inst_val is None:
|
| 153 |
setattr(self, param, param_dict_val)
|
| 154 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 155 |
def verify_not_chat_api(self, dataset):
|
| 156 |
if isinstance(dataset[0]["source"], list):
|
| 157 |
raise NotImplementedError(
|
|
@@ -216,259 +238,898 @@ class LazyLoadMixin(Artifact):
|
|
| 216 |
pass
|
| 217 |
|
| 218 |
|
| 219 |
-
class
|
| 220 |
-
InferenceEngine, PackageRequirementsMixin, LazyLoadMixin
|
| 221 |
-
):
|
| 222 |
-
model_name: str
|
| 223 |
max_new_tokens: int
|
| 224 |
-
|
| 225 |
-
|
|
|
|
| 226 |
top_k: Optional[int] = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 227 |
|
| 228 |
_requirements_list = {
|
| 229 |
-
"transformers": "Install huggingface package using 'pip install --upgrade transformers"
|
|
|
|
|
|
|
| 230 |
}
|
| 231 |
|
| 232 |
-
def
|
| 233 |
-
return
|
| 234 |
|
| 235 |
-
def
|
| 236 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 237 |
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
if AutoConfig.from_pretrained(
|
| 241 |
-
self.model_name, trust_remote_code=True
|
| 242 |
-
).is_encoder_decoder
|
| 243 |
-
else "text-generation"
|
| 244 |
-
)
|
| 245 |
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 249 |
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
model_args.update({"max_new_tokens": self.max_new_tokens})
|
| 254 |
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
|
|
|
|
| 270 |
|
| 271 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 272 |
|
| 273 |
-
|
| 274 |
-
model_args.update({"return_full_text": False})
|
| 275 |
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
)
|
|
|
|
| 279 |
|
| 280 |
def prepare_engine(self):
|
| 281 |
if not self.lazy_load:
|
| 282 |
-
self.
|
| 283 |
|
| 284 |
-
def
|
| 285 |
-
return
|
| 286 |
|
| 287 |
-
def
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
if self._get_task() == "text2text-generation":
|
| 293 |
-
self.verify_not_chat_api(dataset)
|
| 294 |
|
| 295 |
-
|
| 296 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 297 |
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
|
| 305 |
-
|
| 306 |
-
|
| 307 |
-
|
|
|
|
| 308 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 309 |
|
| 310 |
-
|
| 311 |
-
|
| 312 |
-
|
|
|
|
|
|
|
| 313 |
|
| 314 |
-
|
| 315 |
-
return get_model_and_label_id(self.model_name, "mock")
|
| 316 |
|
| 317 |
-
|
| 318 |
-
|
| 319 |
|
| 320 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 321 |
self,
|
| 322 |
dataset: Union[List[Dict[str, Any]], DatasetDict],
|
|
|
|
| 323 |
) -> Union[List[str], List[TextGenerationInferenceOutput]]:
|
| 324 |
-
|
|
|
|
|
|
|
| 325 |
|
|
|
|
| 326 |
def _infer(
|
| 327 |
self,
|
| 328 |
dataset: Union[List[Dict[str, Any]], DatasetDict],
|
| 329 |
return_meta_data: bool = False,
|
| 330 |
) -> Union[List[str], List[TextGenerationInferenceOutput]]:
|
| 331 |
-
|
| 332 |
-
|
| 333 |
-
|
| 334 |
-
class MockModeMixin(Artifact):
|
| 335 |
-
mock_mode: bool = False
|
| 336 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 337 |
|
| 338 |
-
|
| 339 |
-
|
| 340 |
-
|
| 341 |
-
|
| 342 |
-
|
| 343 |
-
|
| 344 |
-
|
| 345 |
-
random_seed: Optional[int] = None
|
| 346 |
-
repetition_penalty: Optional[float] = None
|
| 347 |
-
return_options: Any = None
|
| 348 |
-
stop_sequences: Optional[List[str]] = None
|
| 349 |
-
temperature: Optional[float] = None
|
| 350 |
-
time_limit: Optional[int] = None
|
| 351 |
-
top_k: Optional[int] = None
|
| 352 |
-
top_p: Optional[float] = None
|
| 353 |
-
truncate_input_tokens: Optional[int] = None
|
| 354 |
-
typical_p: Optional[float] = None
|
| 355 |
|
| 356 |
|
| 357 |
-
|
| 358 |
-
|
| 359 |
-
beam_width: Optional[int] = None
|
| 360 |
-
decoding_method: Optional[Literal["greedy", "sample"]] = None
|
| 361 |
-
include_stop_sequence: Optional[bool] = None
|
| 362 |
-
length_penalty: Any = None
|
| 363 |
-
max_new_tokens: Optional[int] = None
|
| 364 |
-
min_new_tokens: Optional[int] = None
|
| 365 |
-
random_seed: Optional[int] = None
|
| 366 |
-
repetition_penalty: Optional[float] = None
|
| 367 |
-
return_options: Any = None
|
| 368 |
-
stop_sequences: Optional[List[str]] = None
|
| 369 |
-
temperature: Optional[float] = None
|
| 370 |
-
time_limit: Optional[int] = None
|
| 371 |
-
top_k: Optional[int] = None
|
| 372 |
-
top_p: Optional[float] = None
|
| 373 |
-
truncate_input_tokens: Optional[int] = None
|
| 374 |
-
typical_p: Optional[float] = None
|
| 375 |
|
|
|
|
|
|
|
| 376 |
|
| 377 |
-
|
| 378 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 379 |
|
| 380 |
-
def
|
| 381 |
-
|
| 382 |
-
|
| 383 |
-
|
| 384 |
-
|
| 385 |
-
|
| 386 |
-
'\nThis is since both the "UNITXT_INFERENCE_ENGINE" environmental variable is not set and no default engine was not inputted.'
|
| 387 |
-
"\nFor example, you can fix it by setting"
|
| 388 |
-
"\nexport UNITXT_INFERENCE_ENGINE=engines.ibm_gen_ai.llama_3_70b_instruct"
|
| 389 |
-
"\nto your ~/.bashrc"
|
| 390 |
-
"\nor passing a similar required engine in the default argument"
|
| 391 |
-
)
|
| 392 |
-
engine_reference = self.default
|
| 393 |
-
self.engine = self.get_artifact(engine_reference)
|
| 394 |
|
| 395 |
-
|
| 396 |
-
|
|
|
|
|
|
|
|
|
|
| 397 |
|
| 398 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 399 |
self,
|
| 400 |
dataset: Union[List[Dict[str, Any]], DatasetDict],
|
| 401 |
-
return_meta_data: bool
|
| 402 |
-
|
| 403 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 404 |
|
|
|
|
|
|
|
| 405 |
|
| 406 |
-
|
| 407 |
-
|
| 408 |
-
|
| 409 |
-
label: str = "ollama"
|
| 410 |
-
_requirements_list = {
|
| 411 |
-
"ollama": "Install ollama package using 'pip install --upgrade ollama"
|
| 412 |
-
}
|
| 413 |
-
data_classification_policy = ["public", "proprietary"]
|
| 414 |
|
| 415 |
-
|
| 416 |
-
|
|
|
|
|
|
|
|
|
|
| 417 |
|
| 418 |
-
|
| 419 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 420 |
|
| 421 |
def _infer(
|
| 422 |
self,
|
| 423 |
dataset: Union[List[Dict[str, Any]], DatasetDict],
|
| 424 |
return_meta_data: bool = False,
|
| 425 |
) -> Union[List[str], List[TextGenerationInferenceOutput]]:
|
| 426 |
-
|
| 427 |
-
|
| 428 |
-
args = self.to_dict([StandardAPIParamsMixin])
|
| 429 |
-
|
| 430 |
-
results = []
|
| 431 |
-
|
| 432 |
-
for instance in dataset:
|
| 433 |
-
messages = self.to_messages(instance)
|
| 434 |
-
response = ollama.chat(
|
| 435 |
-
model=self.model,
|
| 436 |
-
messages=messages,
|
| 437 |
-
**args,
|
| 438 |
-
)
|
| 439 |
-
results.append(response)
|
| 440 |
|
| 441 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 442 |
|
| 443 |
|
| 444 |
-
class
|
| 445 |
-
|
|
|
|
|
|
|
| 446 |
|
| 447 |
-
|
| 448 |
-
|
|
|
|
|
|
|
|
|
|
| 449 |
|
| 450 |
-
|
| 451 |
-
def get_token_count(self, dataset):
|
| 452 |
-
"""Get the token count of the source key of each dict of the dataset. Add to each instance in the data a "token_count" field.
|
| 453 |
|
| 454 |
-
|
| 455 |
-
|
| 456 |
|
| 457 |
-
|
| 458 |
-
List[int]: The token count of the texts
|
| 459 |
-
"""
|
| 460 |
|
| 461 |
-
|
| 462 |
-
|
| 463 |
-
"""Get the token logprobs of the options of the key task_data.options of each dict of the dataset.
|
| 464 |
|
| 465 |
-
|
|
|
|
| 466 |
|
| 467 |
-
|
| 468 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 469 |
|
| 470 |
-
|
| 471 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 472 |
"""
|
| 473 |
|
| 474 |
def select(self, dataset: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
|
|
@@ -552,12 +1213,14 @@ class IbmGenAiInferenceEngine(
|
|
| 552 |
}
|
| 553 |
data_classification_policy = ["public", "proprietary"]
|
| 554 |
parameters: Optional[IbmGenAiInferenceEngineParams] = None
|
|
|
|
| 555 |
|
| 556 |
def get_engine_id(self):
|
| 557 |
return get_model_and_label_id(self.model_name, self.label)
|
| 558 |
|
| 559 |
-
|
| 560 |
-
|
|
|
|
| 561 |
|
| 562 |
api_key_env_var_name = "GENAI_KEY"
|
| 563 |
api_key = os.environ.get(api_key_env_var_name)
|
|
@@ -566,9 +1229,22 @@ class IbmGenAiInferenceEngine(
|
|
| 566 |
f"Error while trying to run IbmGenAiInferenceEngine."
|
| 567 |
f" Please set the environment param '{api_key_env_var_name}'."
|
| 568 |
)
|
| 569 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 570 |
self.client = Client(credentials=credentials)
|
| 571 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 572 |
self._set_inference_parameters()
|
| 573 |
|
| 574 |
def _infer(
|
|
@@ -576,22 +1252,26 @@ class IbmGenAiInferenceEngine(
|
|
| 576 |
dataset: Union[List[Dict[str, Any]], DatasetDict],
|
| 577 |
return_meta_data: bool = False,
|
| 578 |
) -> Union[List[str], List[TextGenerationInferenceOutput]]:
|
| 579 |
-
from genai.schema import TextGenerationParameters
|
|
|
|
|
|
|
| 580 |
|
| 581 |
genai_params = TextGenerationParameters(
|
| 582 |
**self.to_dict([IbmGenAiInferenceEngineParamsMixin])
|
| 583 |
)
|
| 584 |
|
| 585 |
-
results = []
|
| 586 |
responses = self.client.text.generation.create(
|
| 587 |
model_id=self.model_name,
|
| 588 |
inputs=[instance["source"] for instance in dataset],
|
| 589 |
parameters=genai_params,
|
|
|
|
| 590 |
)
|
|
|
|
|
|
|
| 591 |
for response in responses:
|
| 592 |
-
|
| 593 |
result = self.get_return_object(
|
| 594 |
-
generated_text,
|
| 595 |
)
|
| 596 |
results.append(result)
|
| 597 |
return results
|
|
@@ -601,7 +1281,9 @@ class IbmGenAiInferenceEngine(
|
|
| 601 |
dataset: Union[List[Dict[str, Any]], DatasetDict],
|
| 602 |
return_meta_data: bool = False,
|
| 603 |
) -> Union[List[Dict], List[TextGenerationInferenceOutput]]:
|
| 604 |
-
from genai.schema import TextGenerationParameters
|
|
|
|
|
|
|
| 605 |
|
| 606 |
logprobs_return_options = {
|
| 607 |
"generated_tokens": True,
|
|
@@ -620,11 +1302,12 @@ class IbmGenAiInferenceEngine(
|
|
| 620 |
model_id=self.model_name,
|
| 621 |
inputs=[instance["source"] for instance in dataset],
|
| 622 |
parameters=genai_params,
|
|
|
|
| 623 |
)
|
| 624 |
|
| 625 |
predict_results = []
|
| 626 |
for prediction in predictions:
|
| 627 |
-
result = prediction.results[0]
|
| 628 |
assert isinstance(
|
| 629 |
result.generated_tokens, list
|
| 630 |
), "result.generated_tokens should be a list"
|
|
@@ -651,9 +1334,22 @@ class IbmGenAiInferenceEngine(
|
|
| 651 |
output_tokens=result.generated_token_count,
|
| 652 |
model_name=self.model_name,
|
| 653 |
inference_type=self.label,
|
|
|
|
|
|
|
|
|
|
| 654 |
)
|
| 655 |
return predict_result
|
| 656 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 657 |
def get_token_count(self, dataset):
|
| 658 |
texts = [instance["source"] for instance in dataset]
|
| 659 |
token_counts = list(
|
|
@@ -973,6 +1669,10 @@ class VLLMRemoteInferenceEngine(OpenAiInferenceEngine):
|
|
| 973 |
return OpenAI(api_key=api_key, base_url=api_url)
|
| 974 |
|
| 975 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 976 |
class WMLInferenceEngineParamsMixin(Artifact):
|
| 977 |
decoding_method: Optional[Literal["greedy", "sample"]] = None
|
| 978 |
length_penalty: Optional[Dict[str, Union[int, float]]] = None
|
|
@@ -1008,78 +1708,87 @@ class WMLInferenceEngineParams(Artifact):
|
|
| 1008 |
return_options: Optional[Dict[str, bool]] = None
|
| 1009 |
|
| 1010 |
|
| 1011 |
-
class
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1012 |
InferenceEngine,
|
| 1013 |
-
WMLInferenceEngineParamsMixin,
|
| 1014 |
PackageRequirementsMixin,
|
| 1015 |
LogProbInferenceEngine,
|
| 1016 |
OptionSelectingByLogProbsInferenceEngine,
|
| 1017 |
):
|
| 1018 |
-
"""
|
| 1019 |
|
| 1020 |
Attributes:
|
| 1021 |
credentials (Dict[str, str], optional): By default, it is created by a class
|
| 1022 |
instance which tries to retrieve proper environment variables
|
| 1023 |
-
("WML_URL", "WML_PROJECT_ID", "WML_APIKEY"
|
| 1024 |
-
the following keys: "url", "apikey", "project_id"
|
| 1025 |
-
|
|
|
|
| 1026 |
model_name (str, optional): ID of a model to be used for inference. Mutually
|
| 1027 |
exclusive with 'deployment_id'.
|
| 1028 |
deployment_id (str, optional): Deployment ID of a tuned model to be used for
|
| 1029 |
inference. Mutually exclusive with 'model_name'.
|
| 1030 |
-
parameters (WMLInferenceEngineParams, optional):
|
| 1031 |
-
|
| 1032 |
-
|
| 1033 |
-
concurrency_limit (int): number of requests that will be sent in parallel, max is 10.
|
| 1034 |
-
|
| 1035 |
-
Examples:
|
| 1036 |
-
from .api import load_dataset
|
| 1037 |
-
|
| 1038 |
-
wml_credentials = {
|
| 1039 |
-
"url": "some_url", "project_id": "some_id", "api_key": "some_key"
|
| 1040 |
-
}
|
| 1041 |
-
model_name = "google/flan-t5-xxl"
|
| 1042 |
-
wml_inference = WMLInferenceEngine(
|
| 1043 |
-
credentials=wml_credentials,
|
| 1044 |
-
model_name=model_name,
|
| 1045 |
-
data_classification_policy=["public"],
|
| 1046 |
-
top_p=0.5,
|
| 1047 |
-
random_seed=123,
|
| 1048 |
-
)
|
| 1049 |
-
|
| 1050 |
-
dataset = load_dataset(
|
| 1051 |
-
dataset_query="card=cards.argument_topic,template_card_index=0,loader_limit=5"
|
| 1052 |
-
)
|
| 1053 |
-
results = wml_inference.infer(dataset["test"])
|
| 1054 |
"""
|
| 1055 |
|
| 1056 |
-
credentials: Optional[
|
| 1057 |
model_name: Optional[str] = None
|
| 1058 |
deployment_id: Optional[str] = None
|
| 1059 |
label: str = "wml"
|
| 1060 |
_requirements_list = {
|
| 1061 |
-
"
|
| 1062 |
"It is advised to have Python version >=3.10 installed, as at lower version this package "
|
| 1063 |
"may cause conflicts with other installed packages."
|
| 1064 |
}
|
| 1065 |
data_classification_policy = ["public", "proprietary"]
|
| 1066 |
-
parameters: Optional[
|
| 1067 |
-
|
|
|
|
|
|
|
| 1068 |
_client: Any = InternalField(default=None, name="WML client")
|
|
|
|
| 1069 |
|
| 1070 |
def get_engine_id(self):
|
| 1071 |
-
return get_model_and_label_id(self.model_name, self.label)
|
| 1072 |
|
| 1073 |
def verify(self):
|
| 1074 |
super().verify()
|
| 1075 |
|
| 1076 |
-
if self.credentials is not None:
|
| 1077 |
-
for key in self.credentials:
|
| 1078 |
-
if key not in ["url", "apikey", "project_id", "space_id"]:
|
| 1079 |
-
raise ValueError(
|
| 1080 |
-
f'Illegal credential key: {key}, use only ["url", "apikey", "project_id", "space_id"]'
|
| 1081 |
-
)
|
| 1082 |
-
|
| 1083 |
assert (
|
| 1084 |
self.model_name
|
| 1085 |
or self.deployment_id
|
|
@@ -1095,166 +1804,186 @@ class WMLInferenceEngine(
|
|
| 1095 |
data["credentials"][key] = value
|
| 1096 |
return data
|
| 1097 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1098 |
@staticmethod
|
| 1099 |
-
def _read_wml_credentials_from_env() ->
|
| 1100 |
-
|
| 1101 |
-
|
| 1102 |
-
|
| 1103 |
-
|
| 1104 |
-
"
|
|
|
|
| 1105 |
)
|
|
|
|
| 1106 |
|
| 1107 |
-
|
| 1108 |
-
|
| 1109 |
-
|
| 1110 |
-
|
| 1111 |
-
|
| 1112 |
-
|
| 1113 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1114 |
)
|
| 1115 |
|
| 1116 |
-
|
| 1117 |
-
credentials[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1118 |
|
| 1119 |
return credentials
|
| 1120 |
|
| 1121 |
-
|
| 1122 |
-
|
| 1123 |
-
|
| 1124 |
-
|
| 1125 |
-
|
|
|
|
|
|
|
| 1126 |
|
| 1127 |
-
|
| 1128 |
-
|
| 1129 |
-
|
| 1130 |
-
|
| 1131 |
-
|
| 1132 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1133 |
|
| 1134 |
def prepare_engine(self):
|
|
|
|
|
|
|
| 1135 |
self._client = self._initialize_wml_client()
|
| 1136 |
|
| 1137 |
self._set_inference_parameters()
|
| 1138 |
|
| 1139 |
-
def
|
| 1140 |
-
from ibm_watsonx_ai.foundation_models import ModelInference
|
| 1141 |
|
| 1142 |
-
|
| 1143 |
model_id=self.model_name,
|
| 1144 |
deployment_id=self.deployment_id,
|
| 1145 |
api_client=self._client,
|
| 1146 |
)
|
| 1147 |
-
params = self.to_dict([WMLInferenceEngineParamsMixin], keep_empty=False)
|
| 1148 |
|
| 1149 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1150 |
|
| 1151 |
def _infer(
|
| 1152 |
self,
|
| 1153 |
dataset: Union[List[Dict[str, Any]], DatasetDict],
|
| 1154 |
return_meta_data: bool = False,
|
| 1155 |
) -> Union[List[str], List[TextGenerationInferenceOutput]]:
|
| 1156 |
-
self.
|
| 1157 |
-
|
| 1158 |
-
|
| 1159 |
-
result = []
|
| 1160 |
-
for source in dataset["source"]:
|
| 1161 |
-
instance_result = model.generate(
|
| 1162 |
-
prompt=source,
|
| 1163 |
-
params=self.to_dict([WMLInferenceEngineParamsMixin], keep_empty=False),
|
| 1164 |
-
)
|
| 1165 |
-
prediction = instance_result["results"][0]["generated_text"]
|
| 1166 |
-
instance_final_results = self.get_return_object(
|
| 1167 |
-
prediction, instance_result, return_meta_data
|
| 1168 |
-
)
|
| 1169 |
-
result.append(instance_final_results)
|
| 1170 |
|
| 1171 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1172 |
|
| 1173 |
def _infer_log_probs(
|
| 1174 |
self,
|
| 1175 |
dataset: Union[List[Dict[str, Any]], DatasetDict],
|
| 1176 |
return_meta_data: bool = False,
|
| 1177 |
) -> Union[List[Dict], List[TextGenerationInferenceOutput]]:
|
| 1178 |
-
self.
|
| 1179 |
-
|
| 1180 |
-
model, params = self._load_model_and_params()
|
| 1181 |
-
|
| 1182 |
-
user_return_options = params.pop("return_options", {})
|
| 1183 |
-
# currently this is the only configuration that returns generated logprobs and behaves as expected
|
| 1184 |
-
logprobs_return_options = {
|
| 1185 |
-
"input_tokens": True,
|
| 1186 |
-
"generated_tokens": True,
|
| 1187 |
-
"token_logprobs": True,
|
| 1188 |
-
"top_n_tokens": user_return_options.get("top_n_tokens", 5),
|
| 1189 |
-
}
|
| 1190 |
-
for key, value in logprobs_return_options.items():
|
| 1191 |
-
if key in user_return_options and user_return_options[key] != value:
|
| 1192 |
-
raise ValueError(
|
| 1193 |
-
f"'{key}={user_return_options[key]}' is not supported for the 'infer_log_probs' "
|
| 1194 |
-
f"method of {self.__class__.__name__}. For obtaining the logprobs of generated tokens "
|
| 1195 |
-
f"please use '{key}={value}'."
|
| 1196 |
-
)
|
| 1197 |
-
|
| 1198 |
-
params = {
|
| 1199 |
-
**params,
|
| 1200 |
-
"return_options": logprobs_return_options,
|
| 1201 |
-
}
|
| 1202 |
|
| 1203 |
-
|
| 1204 |
-
|
| 1205 |
-
|
|
|
|
| 1206 |
)
|
| 1207 |
-
final_results = []
|
| 1208 |
-
for result in results:
|
| 1209 |
-
generated_tokens = result["results"][0]["generated_tokens"]
|
| 1210 |
-
final_results.append(
|
| 1211 |
-
self.get_return_object(generated_tokens, result, return_meta_data)
|
| 1212 |
-
)
|
| 1213 |
-
return final_results
|
| 1214 |
|
| 1215 |
-
|
| 1216 |
-
|
| 1217 |
-
|
| 1218 |
-
|
| 1219 |
-
|
| 1220 |
-
|
| 1221 |
-
model_name=self.model_name,
|
| 1222 |
-
inference_type=self.label,
|
| 1223 |
-
)
|
| 1224 |
-
return predict_result
|
| 1225 |
|
| 1226 |
def get_token_count(self, dataset):
|
| 1227 |
-
|
|
|
|
| 1228 |
|
| 1229 |
texts = [instance["source"] for instance in dataset]
|
| 1230 |
|
| 1231 |
-
model = ModelInference(
|
| 1232 |
-
model_id=self.model_name,
|
| 1233 |
-
deployment_id=self.deployment_id,
|
| 1234 |
-
api_client=self._client,
|
| 1235 |
-
)
|
| 1236 |
-
|
| 1237 |
for i in trange(len(texts), desc="Tokenizing"):
|
| 1238 |
-
response =
|
|
|
|
|
|
|
| 1239 |
dataset[i]["token_count"] = response["token_count"]
|
| 1240 |
|
| 1241 |
return dataset
|
| 1242 |
|
| 1243 |
def get_options_log_probs(self, dataset):
|
| 1244 |
"""Add to each instance in the data a "options_log_prob" field, which is a dict with str as key and a list of {text: str, logprob:float}."""
|
| 1245 |
-
|
| 1246 |
-
|
| 1247 |
-
model = ModelInference(
|
| 1248 |
-
model_id=self.model_name,
|
| 1249 |
-
deployment_id=self.deployment_id,
|
| 1250 |
-
api_client=self._client,
|
| 1251 |
-
)
|
| 1252 |
|
| 1253 |
texts = [x["source"] for x in dataset]
|
| 1254 |
|
| 1255 |
responses = list(
|
| 1256 |
tqdm(
|
| 1257 |
-
|
| 1258 |
prompt=texts,
|
| 1259 |
params={
|
| 1260 |
"decoding_method": "greedy",
|
|
@@ -1286,110 +2015,335 @@ class WMLInferenceEngine(
|
|
| 1286 |
return dataset
|
| 1287 |
|
| 1288 |
|
| 1289 |
-
|
| 1290 |
-
|
| 1291 |
|
|
|
|
| 1292 |
|
| 1293 |
-
|
| 1294 |
-
|
| 1295 |
-
|
| 1296 |
|
|
|
|
|
|
|
| 1297 |
|
| 1298 |
-
|
| 1299 |
-
|
| 1300 |
-
|
| 1301 |
-
|
| 1302 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1303 |
|
| 1304 |
-
|
| 1305 |
-
|
| 1306 |
-
|
| 1307 |
-
|
| 1308 |
-
|
| 1309 |
|
| 1310 |
-
|
| 1311 |
-
return get_model_and_label_id(self.model_name, "hf_lava")
|
| 1312 |
|
| 1313 |
-
def
|
| 1314 |
-
|
| 1315 |
-
from transformers import AutoProcessor, LlavaForConditionalGeneration
|
| 1316 |
|
| 1317 |
-
|
| 1318 |
-
|
| 1319 |
-
|
| 1320 |
-
|
| 1321 |
-
|
| 1322 |
-
|
| 1323 |
)
|
| 1324 |
|
| 1325 |
-
|
| 1326 |
-
|
| 1327 |
-
|
| 1328 |
-
|
| 1329 |
-
|
| 1330 |
-
|
| 1331 |
-
|
| 1332 |
-
|
| 1333 |
-
|
| 1334 |
-
|
| 1335 |
-
self._prepare_engine()
|
| 1336 |
|
| 1337 |
-
|
| 1338 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1339 |
|
| 1340 |
-
|
| 1341 |
-
|
| 1342 |
-
|
| 1343 |
-
|
| 1344 |
-
for turn in instance["source"]:
|
| 1345 |
-
if isinstance(turn["content"], list):
|
| 1346 |
-
for content in turn["content"]:
|
| 1347 |
-
if content["type"] == "image_url":
|
| 1348 |
-
content["type"] = "image"
|
| 1349 |
-
image_url = content.pop("image_url")["url"]
|
| 1350 |
-
image = data_url_to_image(image_url)
|
| 1351 |
-
images.append(image)
|
| 1352 |
-
conversation.append(turn)
|
| 1353 |
-
return conversation, images
|
| 1354 |
|
| 1355 |
-
def
|
| 1356 |
self,
|
| 1357 |
dataset: Union[List[Dict[str, Any]], DatasetDict],
|
| 1358 |
-
|
| 1359 |
-
|
| 1360 |
-
|
| 1361 |
-
|
| 1362 |
|
| 1363 |
-
|
| 1364 |
|
| 1365 |
-
|
| 1366 |
-
|
| 1367 |
-
|
|
|
|
|
|
|
| 1368 |
|
| 1369 |
-
|
| 1370 |
-
images = images[0]
|
| 1371 |
|
| 1372 |
-
|
| 1373 |
-
|
| 1374 |
-
|
|
|
|
|
|
|
| 1375 |
|
| 1376 |
-
|
| 1377 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1378 |
)
|
|
|
|
| 1379 |
|
| 1380 |
-
|
| 1381 |
-
|
| 1382 |
-
|
| 1383 |
-
|
| 1384 |
-
|
| 1385 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1386 |
)
|
| 1387 |
-
|
| 1388 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1389 |
)
|
| 1390 |
-
|
| 1391 |
|
| 1392 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1393 |
|
| 1394 |
|
| 1395 |
class LMMSEvalBaseInferenceEngine(
|
|
@@ -1400,7 +2354,9 @@ class LMMSEvalBaseInferenceEngine(
|
|
| 1400 |
batch_size: int = 1
|
| 1401 |
image_token = "<image>"
|
| 1402 |
|
| 1403 |
-
_requirements_list =
|
|
|
|
|
|
|
| 1404 |
|
| 1405 |
def prepare_engine(self):
|
| 1406 |
if not self.lazy_load:
|
|
@@ -1447,7 +2403,6 @@ class LMMSEvalInferenceEngine(LMMSEvalBaseInferenceEngine):
|
|
| 1447 |
dataset: Union[List[Dict[str, Any]], DatasetDict],
|
| 1448 |
return_meta_data: bool = False,
|
| 1449 |
) -> Union[List[str], List[TextGenerationInferenceOutput]]:
|
| 1450 |
-
self.verify_not_chat_api(dataset)
|
| 1451 |
if not self._is_loaded():
|
| 1452 |
self._prepare_engine()
|
| 1453 |
|
|
|
|
| 9 |
import time
|
| 10 |
import uuid
|
| 11 |
from collections import Counter
|
| 12 |
+
from typing import (
|
| 13 |
+
Any,
|
| 14 |
+
Dict,
|
| 15 |
+
Iterable,
|
| 16 |
+
List,
|
| 17 |
+
Literal,
|
| 18 |
+
Mapping,
|
| 19 |
+
Optional,
|
| 20 |
+
Sequence,
|
| 21 |
+
Tuple,
|
| 22 |
+
Union,
|
| 23 |
+
)
|
| 24 |
|
| 25 |
from datasets import DatasetDict
|
| 26 |
from tqdm import tqdm, trange
|
|
|
|
| 30 |
from .dataclass import InternalField, NonPositionalField
|
| 31 |
from .deprecation_utils import deprecation
|
| 32 |
from .error_utils import UnitxtError
|
| 33 |
+
from .image_operators import EncodeImageToString, data_url_to_image, extract_images
|
| 34 |
from .logging_utils import get_logger
|
| 35 |
from .operator import PackageRequirementsMixin
|
| 36 |
from .operators import ArtifactFetcherMixin
|
| 37 |
from .settings_utils import get_constants, get_settings
|
| 38 |
+
from .type_utils import isoftype
|
| 39 |
|
| 40 |
constants = get_constants()
|
| 41 |
settings = get_settings()
|
|
|
|
| 79 |
|
| 80 |
input_tokens (int) : number of input tokens to the model.
|
| 81 |
output_tokens (int) : number of output tokens to the model.
|
| 82 |
+
stop_reason (str): stop reason for text generation, for example "eos" (end of string).
|
| 83 |
+
seed (int): seed used by the model during generation.
|
| 84 |
+
input_text (str): input to the model.
|
| 85 |
model_name (str): the model_name as kept in the InferenceEngine.
|
| 86 |
inference_type (str): The label stating the type of the InferenceEngine.
|
| 87 |
"""
|
|
|
|
| 89 |
prediction: Union[str, List[Dict[str, Any]]]
|
| 90 |
input_tokens: Optional[int] = None
|
| 91 |
output_tokens: Optional[int] = None
|
| 92 |
+
stop_reason: Optional[str] = None
|
| 93 |
+
seed: Optional[int] = None
|
| 94 |
+
input_text: Optional[str] = None
|
| 95 |
model_name: Optional[str] = None
|
| 96 |
inference_type: Optional[str] = None
|
| 97 |
|
|
|
|
| 170 |
if param_inst_val is None:
|
| 171 |
setattr(self, param, param_dict_val)
|
| 172 |
|
| 173 |
+
def get_model_details(self) -> Dict:
|
| 174 |
+
"""Might not be possible to implement for all inference engines. Returns an empty dict by default."""
|
| 175 |
+
return {}
|
| 176 |
+
|
| 177 |
def verify_not_chat_api(self, dataset):
|
| 178 |
if isinstance(dataset[0]["source"], list):
|
| 179 |
raise NotImplementedError(
|
|
|
|
| 238 |
pass
|
| 239 |
|
| 240 |
|
| 241 |
+
class HFGenerationParamsMixin(Artifact):
|
|
|
|
|
|
|
|
|
|
| 242 |
max_new_tokens: int
|
| 243 |
+
do_sample: bool = False
|
| 244 |
+
temperature: Optional[float] = None
|
| 245 |
+
top_p: Optional[float] = None
|
| 246 |
top_k: Optional[int] = None
|
| 247 |
+
num_beams: Optional[int] = None
|
| 248 |
+
repetition_penalty: Optional[float] = None
|
| 249 |
+
pad_token_id: Optional[int] = None
|
| 250 |
+
eos_token_id: Optional[int] = None
|
| 251 |
+
|
| 252 |
+
|
| 253 |
+
class HFInferenceEngineBase(
|
| 254 |
+
InferenceEngine,
|
| 255 |
+
LogProbInferenceEngine,
|
| 256 |
+
PackageRequirementsMixin,
|
| 257 |
+
LazyLoadMixin,
|
| 258 |
+
HFGenerationParamsMixin,
|
| 259 |
+
):
|
| 260 |
+
model_name: str
|
| 261 |
+
label: str
|
| 262 |
+
|
| 263 |
+
n_top_tokens: int = 5
|
| 264 |
+
|
| 265 |
+
device: Any = None
|
| 266 |
+
device_map: Any = None
|
| 267 |
+
|
| 268 |
+
use_fast_tokenizer: bool = True
|
| 269 |
+
low_cpu_mem_usage: bool = True
|
| 270 |
+
torch_dtype: str = "torch.float16"
|
| 271 |
+
|
| 272 |
+
model: Any = InternalField(default=None, name="Inference object")
|
| 273 |
+
processor: Any = InternalField(default=None, name="Input processor (tokenizer)")
|
| 274 |
|
| 275 |
_requirements_list = {
|
| 276 |
+
"transformers": "Install huggingface package using 'pip install --upgrade transformers",
|
| 277 |
+
"torch": "Install torch, go on PyTorch website for mode details.",
|
| 278 |
+
"accelerate": "pip install accelerate",
|
| 279 |
}
|
| 280 |
|
| 281 |
+
def _is_loaded(self):
|
| 282 |
+
return hasattr(self, "model") and self.model is not None
|
| 283 |
|
| 284 |
+
def _set_inference_device(self):
|
| 285 |
+
if self.device is not None and self.device_map is not None:
|
| 286 |
+
raise ValueError(
|
| 287 |
+
f"You must specify either 'device' or 'device_map', however both "
|
| 288 |
+
f"were given: 'device={self.device}', 'device_map={self.device_map}'."
|
| 289 |
+
)
|
| 290 |
|
| 291 |
+
if self.device is None and self.device_map is None:
|
| 292 |
+
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 293 |
|
| 294 |
+
self.device = torch.device(
|
| 295 |
+
"mps"
|
| 296 |
+
if torch.backends.mps.is_available()
|
| 297 |
+
else 0
|
| 298 |
+
if torch.cuda.is_available()
|
| 299 |
+
else "cpu"
|
| 300 |
+
)
|
| 301 |
|
| 302 |
+
@abc.abstractmethod
|
| 303 |
+
def _init_processor(self):
|
| 304 |
+
raise NotImplementedError
|
|
|
|
| 305 |
|
| 306 |
+
@abc.abstractmethod
|
| 307 |
+
def _init_model(self):
|
| 308 |
+
raise NotImplementedError
|
| 309 |
+
|
| 310 |
+
def _get_torch_dtype(self):
|
| 311 |
+
import torch
|
| 312 |
+
|
| 313 |
+
if not isinstance(self.torch_dtype, str) or not self.torch_dtype.startswith(
|
| 314 |
+
"torch."
|
| 315 |
+
):
|
| 316 |
+
raise ValueError(
|
| 317 |
+
f"'torch_dtype' must be a string representing torch data "
|
| 318 |
+
f"type used for inference. The name should be an absolute "
|
| 319 |
+
f"import, for example: 'torch.float16'. However, "
|
| 320 |
+
f"'{self.torch_dtype}' was given instead."
|
| 321 |
+
)
|
| 322 |
|
| 323 |
+
try:
|
| 324 |
+
dtype = eval(self.torch_dtype)
|
| 325 |
+
except (AttributeError, TypeError) as e:
|
| 326 |
+
raise ValueError(
|
| 327 |
+
f"Incorrect value of 'torch_dtype' was given: '{self.torch_dtype}'."
|
| 328 |
+
) from e
|
| 329 |
+
|
| 330 |
+
if not isinstance(dtype, torch.dtype):
|
| 331 |
+
raise ValueError(
|
| 332 |
+
f"'torch_dtype' must be an instance of 'torch.dtype', however, "
|
| 333 |
+
f"'{dtype}' is an instance of '{type(dtype)}'."
|
| 334 |
+
)
|
| 335 |
|
| 336 |
+
return dtype
|
|
|
|
| 337 |
|
| 338 |
+
def _prepare_engine(self):
|
| 339 |
+
self._set_inference_device()
|
| 340 |
+
self._init_processor()
|
| 341 |
+
self._init_model()
|
| 342 |
|
| 343 |
def prepare_engine(self):
|
| 344 |
if not self.lazy_load:
|
| 345 |
+
self._prepare_engine()
|
| 346 |
|
| 347 |
+
def get_engine_id(self):
|
| 348 |
+
return get_model_and_label_id(self.model_name, self.label)
|
| 349 |
|
| 350 |
+
def decode_tokens(self, tokens: Sequence, inp_length: int) -> List[str]:
|
| 351 |
+
return [
|
| 352 |
+
self.processor.decode(token, skip_special_tokens=True)
|
| 353 |
+
for token in tokens[inp_length:]
|
| 354 |
+
]
|
|
|
|
|
|
|
| 355 |
|
| 356 |
+
@staticmethod
|
| 357 |
+
def create_string_from_tokens(string_tokens: List[str]) -> str:
|
| 358 |
+
return "".join(token for token in string_tokens)
|
| 359 |
+
|
| 360 |
+
def make_predictions(self, prepared_inputs: Mapping) -> Mapping:
|
| 361 |
+
return self.model.generate(
|
| 362 |
+
**prepared_inputs,
|
| 363 |
+
**self.to_dict([HFGenerationParamsMixin], keep_empty=False),
|
| 364 |
+
output_scores=True,
|
| 365 |
+
return_dict_in_generate=True,
|
| 366 |
+
)
|
| 367 |
|
| 368 |
+
def compute_transition_scores(
|
| 369 |
+
self, sequences: Sequence, scores: Sequence, beam_indices: Optional[int]
|
| 370 |
+
) -> Sequence:
|
| 371 |
+
# Some models may not support computing scores in this form by default, so a possible
|
| 372 |
+
# child class should have its own implementation of this method if necessary.
|
| 373 |
+
return self.model.compute_transition_scores(
|
| 374 |
+
sequences,
|
| 375 |
+
scores,
|
| 376 |
+
normalize_logits=True,
|
| 377 |
+
beam_indices=beam_indices,
|
| 378 |
+
)
|
| 379 |
|
| 380 |
+
def get_logprobs(
|
| 381 |
+
self, predictions: Mapping, string_tokens: List[List[str]]
|
| 382 |
+
) -> List[List[Dict[str, Any]]]:
|
| 383 |
+
beam_indices = (
|
| 384 |
+
predictions.beam_indices
|
| 385 |
+
if self.num_beams is not None and self.num_beams > 1
|
| 386 |
+
else None
|
| 387 |
+
)
|
| 388 |
|
| 389 |
+
transition_scores = self.compute_transition_scores(
|
| 390 |
+
sequences=predictions.sequences,
|
| 391 |
+
scores=predictions.scores,
|
| 392 |
+
beam_indices=beam_indices,
|
| 393 |
+
)
|
| 394 |
|
| 395 |
+
logprobs: List[List[Dict[str, Any]]] = []
|
|
|
|
| 396 |
|
| 397 |
+
for sample_no, sample_scores in enumerate(transition_scores.detach().cpu()):
|
| 398 |
+
sample_logprobs: List[Dict[str, Any]] = []
|
| 399 |
|
| 400 |
+
for n, score in enumerate(sample_scores):
|
| 401 |
+
sample_logprobs.append(
|
| 402 |
+
{
|
| 403 |
+
"text": string_tokens[sample_no][n],
|
| 404 |
+
"logprob": float(score.cpu()),
|
| 405 |
+
"top_tokens": [
|
| 406 |
+
{
|
| 407 |
+
"text": self.processor.decode(idx),
|
| 408 |
+
"logprob": float(
|
| 409 |
+
predictions.scores[n][sample_no][idx].cpu()
|
| 410 |
+
),
|
| 411 |
+
}
|
| 412 |
+
for idx in predictions.scores[n][sample_no].argsort(
|
| 413 |
+
dim=0, descending=True
|
| 414 |
+
)[: self.n_top_tokens]
|
| 415 |
+
],
|
| 416 |
+
}
|
| 417 |
+
)
|
| 418 |
+
|
| 419 |
+
logprobs.append(sample_logprobs)
|
| 420 |
+
|
| 421 |
+
return logprobs
|
| 422 |
+
|
| 423 |
+
@abc.abstractmethod
|
| 424 |
+
def prepare_inputs(self, data: Iterable) -> Mapping:
|
| 425 |
+
raise NotImplementedError
|
| 426 |
+
|
| 427 |
+
def get_return_object(
|
| 428 |
+
self,
|
| 429 |
+
output: Union[str, List[Dict[str, Any]]],
|
| 430 |
+
output_tokens: Optional[int],
|
| 431 |
+
inp: Optional[str],
|
| 432 |
+
inp_tokens: Optional[int],
|
| 433 |
+
return_meta_data: bool,
|
| 434 |
+
) -> Union[str, List[Dict[str, Any]], TextGenerationInferenceOutput]:
|
| 435 |
+
if return_meta_data:
|
| 436 |
+
return TextGenerationInferenceOutput(
|
| 437 |
+
prediction=output,
|
| 438 |
+
output_tokens=output_tokens if output_tokens is not None else None,
|
| 439 |
+
input_text=inp,
|
| 440 |
+
input_tokens=inp_tokens if inp_tokens is not None else None,
|
| 441 |
+
model_name=self.model_name,
|
| 442 |
+
inference_type=self.label,
|
| 443 |
+
)
|
| 444 |
+
return output
|
| 445 |
+
|
| 446 |
+
def infer(
|
| 447 |
self,
|
| 448 |
dataset: Union[List[Dict[str, Any]], DatasetDict],
|
| 449 |
+
return_meta_data: bool = False,
|
| 450 |
) -> Union[List[str], List[TextGenerationInferenceOutput]]:
|
| 451 |
+
if not self._is_loaded():
|
| 452 |
+
self._prepare_engine()
|
| 453 |
+
return super().infer(dataset, return_meta_data)
|
| 454 |
|
| 455 |
+
@abc.abstractmethod
|
| 456 |
def _infer(
|
| 457 |
self,
|
| 458 |
dataset: Union[List[Dict[str, Any]], DatasetDict],
|
| 459 |
return_meta_data: bool = False,
|
| 460 |
) -> Union[List[str], List[TextGenerationInferenceOutput]]:
|
| 461 |
+
raise NotImplementedError
|
|
|
|
|
|
|
|
|
|
|
|
|
| 462 |
|
| 463 |
+
def infer_log_probs(
|
| 464 |
+
self,
|
| 465 |
+
dataset: Union[List[Dict[str, Any]], DatasetDict],
|
| 466 |
+
return_meta_data: bool = False,
|
| 467 |
+
) -> Union[List[Dict], List[TextGenerationInferenceOutput]]:
|
| 468 |
+
if not self._is_loaded():
|
| 469 |
+
self._prepare_engine()
|
| 470 |
+
return super().infer_log_probs(dataset, return_meta_data)
|
| 471 |
|
| 472 |
+
@abc.abstractmethod
|
| 473 |
+
def _infer_log_probs(
|
| 474 |
+
self,
|
| 475 |
+
dataset: Union[List[Dict[str, Any]], DatasetDict],
|
| 476 |
+
return_meta_data: bool = False,
|
| 477 |
+
) -> Union[List[Dict], List[TextGenerationInferenceOutput]]:
|
| 478 |
+
raise NotImplementedError
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 479 |
|
| 480 |
|
| 481 |
+
class HFAutoModelInferenceEngine(HFInferenceEngineBase):
|
| 482 |
+
label: str = "hf_auto_model"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 483 |
|
| 484 |
+
def _init_processor(self):
|
| 485 |
+
from transformers import AutoTokenizer
|
| 486 |
|
| 487 |
+
self.processor = AutoTokenizer.from_pretrained(
|
| 488 |
+
pretrained_model_name_or_path=self.model_name,
|
| 489 |
+
use_fast=self.use_fast_tokenizer,
|
| 490 |
+
padding=True,
|
| 491 |
+
truncation=True,
|
| 492 |
+
)
|
| 493 |
|
| 494 |
+
def _init_model(self):
|
| 495 |
+
from transformers import (
|
| 496 |
+
AutoConfig,
|
| 497 |
+
AutoModelForCausalLM,
|
| 498 |
+
AutoModelForSeq2SeqLM,
|
| 499 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 500 |
|
| 501 |
+
model_class = (
|
| 502 |
+
AutoModelForSeq2SeqLM
|
| 503 |
+
if AutoConfig.from_pretrained(self.model_name).is_encoder_decoder
|
| 504 |
+
else AutoModelForCausalLM
|
| 505 |
+
)
|
| 506 |
|
| 507 |
+
self.model = model_class.from_pretrained(
|
| 508 |
+
pretrained_model_name_or_path=self.model_name,
|
| 509 |
+
trust_remote_code=True,
|
| 510 |
+
device_map=self.device_map,
|
| 511 |
+
torch_dtype=self._get_torch_dtype(),
|
| 512 |
+
)
|
| 513 |
+
if self.device_map is None:
|
| 514 |
+
self.model.to(self.device)
|
| 515 |
+
|
| 516 |
+
def prepare_inputs(self, data: Iterable) -> Mapping:
|
| 517 |
+
return self.processor(
|
| 518 |
+
data,
|
| 519 |
+
padding=True,
|
| 520 |
+
truncation=True,
|
| 521 |
+
return_tensors="pt",
|
| 522 |
+
).to(self.device or self.device_map)
|
| 523 |
+
|
| 524 |
+
def _infer_fn(
|
| 525 |
self,
|
| 526 |
dataset: Union[List[Dict[str, Any]], DatasetDict],
|
| 527 |
+
return_meta_data: bool,
|
| 528 |
+
return_logprobs: bool,
|
| 529 |
+
) -> Union[List[str], List[Dict], List[TextGenerationInferenceOutput]]:
|
| 530 |
+
tokenized_inputs = self.prepare_inputs(
|
| 531 |
+
[instance["source"] for instance in dataset]
|
| 532 |
+
)
|
| 533 |
+
input_length = (
|
| 534 |
+
1
|
| 535 |
+
if self.model.config.is_encoder_decoder
|
| 536 |
+
else tokenized_inputs.input_ids.shape[1]
|
| 537 |
+
)
|
| 538 |
|
| 539 |
+
predictions = self.make_predictions(tokenized_inputs)
|
| 540 |
+
sequences = predictions.sequences
|
| 541 |
|
| 542 |
+
string_tokens = [
|
| 543 |
+
self.decode_tokens(sequence, input_length) for sequence in sequences
|
| 544 |
+
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 545 |
|
| 546 |
+
final_outputs = (
|
| 547 |
+
self.get_logprobs(predictions, string_tokens)
|
| 548 |
+
if return_logprobs
|
| 549 |
+
else [self.create_string_from_tokens(strings) for strings in string_tokens]
|
| 550 |
+
)
|
| 551 |
|
| 552 |
+
return [
|
| 553 |
+
self.get_return_object(
|
| 554 |
+
output=final_outputs[i],
|
| 555 |
+
output_tokens=len(string_tokens[i]),
|
| 556 |
+
inp=dataset[i]["source"],
|
| 557 |
+
inp_tokens=len(tokenized_inputs.encodings[i].tokens)
|
| 558 |
+
if tokenized_inputs.encodings is not None
|
| 559 |
+
else None,
|
| 560 |
+
return_meta_data=return_meta_data,
|
| 561 |
+
)
|
| 562 |
+
for i in range(len(sequences))
|
| 563 |
+
]
|
| 564 |
|
| 565 |
def _infer(
|
| 566 |
self,
|
| 567 |
dataset: Union[List[Dict[str, Any]], DatasetDict],
|
| 568 |
return_meta_data: bool = False,
|
| 569 |
) -> Union[List[str], List[TextGenerationInferenceOutput]]:
|
| 570 |
+
self.verify_not_chat_api(dataset)
|
| 571 |
+
return self._infer_fn(dataset, return_meta_data, False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 572 |
|
| 573 |
+
def _infer_log_probs(
|
| 574 |
+
self,
|
| 575 |
+
dataset: Union[List[Dict[str, Any]], DatasetDict],
|
| 576 |
+
return_meta_data: bool = False,
|
| 577 |
+
) -> Union[List[Dict], List[TextGenerationInferenceOutput]]:
|
| 578 |
+
self.verify_not_chat_api(dataset)
|
| 579 |
+
return self._infer_fn(dataset, return_meta_data, True)
|
| 580 |
|
| 581 |
|
| 582 |
+
class HFLlavaInferenceEngine(HFInferenceEngineBase):
|
| 583 |
+
lazy_load: bool = True
|
| 584 |
+
label: str = "hf_lava"
|
| 585 |
+
image_token: str = "<image>"
|
| 586 |
|
| 587 |
+
def compute_transition_scores(
|
| 588 |
+
self, sequences: Sequence, scores: Sequence, beam_indices: Optional[int]
|
| 589 |
+
) -> Sequence:
|
| 590 |
+
if not hasattr(self.model.config, "vocab_size"):
|
| 591 |
+
self.model.config.vocab_size = self.model.vocab_size
|
| 592 |
|
| 593 |
+
return super().compute_transition_scores(sequences, scores, beam_indices)
|
|
|
|
|
|
|
| 594 |
|
| 595 |
+
def _init_processor(self):
|
| 596 |
+
from transformers import AutoProcessor
|
| 597 |
|
| 598 |
+
self.processor = AutoProcessor.from_pretrained(self.model_name)
|
|
|
|
|
|
|
| 599 |
|
| 600 |
+
if not self.pad_token_id and hasattr(self.processor, "eos_token_id"):
|
| 601 |
+
self.pad_token_id = self.processor.eos_token_id
|
|
|
|
| 602 |
|
| 603 |
+
def _init_model(self):
|
| 604 |
+
from transformers import LlavaForConditionalGeneration
|
| 605 |
|
| 606 |
+
self.model = LlavaForConditionalGeneration.from_pretrained(
|
| 607 |
+
self.model_name,
|
| 608 |
+
torch_dtype=self._get_torch_dtype(),
|
| 609 |
+
low_cpu_mem_usage=self.low_cpu_mem_usage,
|
| 610 |
+
device_map=self.device_map,
|
| 611 |
+
)
|
| 612 |
+
if self.device_map is None:
|
| 613 |
+
self.model.to(self.device)
|
| 614 |
|
| 615 |
+
@staticmethod
|
| 616 |
+
def _get_input(instance):
|
| 617 |
+
assert isinstance(instance["source"], list), "Must use format=formats.chat_api"
|
| 618 |
+
images = []
|
| 619 |
+
conversation = []
|
| 620 |
+
for turn in instance["source"]:
|
| 621 |
+
if isinstance(turn["content"], list):
|
| 622 |
+
for content in turn["content"]:
|
| 623 |
+
if content["type"] == "image_url":
|
| 624 |
+
content["type"] = "image"
|
| 625 |
+
image_url = content.pop("image_url")["url"]
|
| 626 |
+
image = data_url_to_image(image_url)
|
| 627 |
+
images.append(image)
|
| 628 |
+
conversation.append(turn)
|
| 629 |
+
return conversation, images
|
| 630 |
+
|
| 631 |
+
def prepare_inputs(self, data: Iterable) -> Mapping:
|
| 632 |
+
conversation, images = self._get_input(data)
|
| 633 |
+
|
| 634 |
+
if len(images) == 1:
|
| 635 |
+
images = images[0]
|
| 636 |
+
|
| 637 |
+
text = self.processor.apply_chat_template(
|
| 638 |
+
conversation, add_generation_prompt=True
|
| 639 |
+
)
|
| 640 |
+
|
| 641 |
+
inputs: Mapping = self.processor(
|
| 642 |
+
images=images, text=text, return_tensors="pt"
|
| 643 |
+
).to(self.device or self.device_map, self._get_torch_dtype())
|
| 644 |
+
|
| 645 |
+
return inputs
|
| 646 |
+
|
| 647 |
+
def _infer_fn(
|
| 648 |
+
self,
|
| 649 |
+
dataset: Union[List[Dict[str, Any]], DatasetDict],
|
| 650 |
+
return_meta_data: bool,
|
| 651 |
+
return_logprobs: bool,
|
| 652 |
+
) -> Union[List[str], List[Dict], List[TextGenerationInferenceOutput]]:
|
| 653 |
+
results = []
|
| 654 |
+
|
| 655 |
+
for instance in tqdm(dataset):
|
| 656 |
+
processed_inputs = self.prepare_inputs(instance)
|
| 657 |
+
input_len = len(processed_inputs["input_ids"][0])
|
| 658 |
+
|
| 659 |
+
predictions = self.make_predictions(processed_inputs)
|
| 660 |
+
|
| 661 |
+
string_tokens = self.decode_tokens(predictions.sequences[0], input_len)
|
| 662 |
+
|
| 663 |
+
final_outputs = (
|
| 664 |
+
self.get_logprobs(predictions, [string_tokens])[0]
|
| 665 |
+
if return_logprobs
|
| 666 |
+
else self.create_string_from_tokens(string_tokens)
|
| 667 |
+
)
|
| 668 |
+
|
| 669 |
+
results.append(
|
| 670 |
+
self.get_return_object(
|
| 671 |
+
output=final_outputs,
|
| 672 |
+
output_tokens=len(string_tokens),
|
| 673 |
+
inp=instance["source"],
|
| 674 |
+
inp_tokens=None,
|
| 675 |
+
return_meta_data=return_meta_data,
|
| 676 |
+
)
|
| 677 |
+
)
|
| 678 |
+
|
| 679 |
+
return results
|
| 680 |
+
|
| 681 |
+
def _infer(
|
| 682 |
+
self,
|
| 683 |
+
dataset: Union[List[Dict[str, Any]], DatasetDict],
|
| 684 |
+
return_meta_data: bool = False,
|
| 685 |
+
) -> Union[List[str], List[TextGenerationInferenceOutput]]:
|
| 686 |
+
return self._infer_fn(dataset, return_meta_data, False)
|
| 687 |
+
|
| 688 |
+
def _infer_log_probs(
|
| 689 |
+
self,
|
| 690 |
+
dataset: Union[List[Dict[str, Any]], DatasetDict],
|
| 691 |
+
return_meta_data: bool = False,
|
| 692 |
+
) -> Union[List[Dict], List[TextGenerationInferenceOutput]]:
|
| 693 |
+
return self._infer_fn(dataset, return_meta_data, True)
|
| 694 |
+
|
| 695 |
+
|
| 696 |
+
class HFPeftInferenceEngine(HFAutoModelInferenceEngine):
|
| 697 |
+
label: str = "hf_peft_auto_model"
|
| 698 |
+
|
| 699 |
+
peft_config: Any = InternalField(
|
| 700 |
+
default=None,
|
| 701 |
+
name="PEFT config read from the directory or the Hub repository "
|
| 702 |
+
"id specified in the 'model_name'.",
|
| 703 |
+
)
|
| 704 |
+
|
| 705 |
+
_requirements_list = {
|
| 706 |
+
"transformers": "Install huggingface package using 'pip install --upgrade transformers",
|
| 707 |
+
"torch": "Install torch, go on PyTorch website for mode details.",
|
| 708 |
+
"accelerate": "pip install accelerate",
|
| 709 |
+
"peft": "Install 'peft' package using: 'pip install peft'.",
|
| 710 |
+
}
|
| 711 |
+
|
| 712 |
+
def _prepare_engine(self):
|
| 713 |
+
self._read_peft_config()
|
| 714 |
+
super()._prepare_engine()
|
| 715 |
+
|
| 716 |
+
def _read_peft_config(self):
|
| 717 |
+
from peft import PeftConfig
|
| 718 |
+
|
| 719 |
+
try:
|
| 720 |
+
config = PeftConfig.from_pretrained(self.model_name)
|
| 721 |
+
assert isinstance(config.base_model_name_or_path, str)
|
| 722 |
+
self.peft_config = config
|
| 723 |
+
|
| 724 |
+
except ValueError as e:
|
| 725 |
+
if "Can't find" in str(e):
|
| 726 |
+
raise ValueError(
|
| 727 |
+
f"Specified model '{self.model_name}' is not the PEFT model. "
|
| 728 |
+
f"Use a regular instance of the `HFAutoModelInferenceEngine` "
|
| 729 |
+
f"instead."
|
| 730 |
+
) from e
|
| 731 |
+
|
| 732 |
+
raise e
|
| 733 |
+
|
| 734 |
+
def _init_processor(self):
|
| 735 |
+
from transformers import AutoTokenizer
|
| 736 |
+
|
| 737 |
+
self.processor = AutoTokenizer.from_pretrained(
|
| 738 |
+
self.peft_config.base_model_name_or_path
|
| 739 |
+
)
|
| 740 |
+
|
| 741 |
+
def _init_model(self):
|
| 742 |
+
from peft import AutoPeftModelForCausalLM, AutoPeftModelForSeq2SeqLM
|
| 743 |
+
from transformers import AutoConfig
|
| 744 |
+
|
| 745 |
+
model_class = (
|
| 746 |
+
AutoPeftModelForSeq2SeqLM
|
| 747 |
+
if AutoConfig.from_pretrained(self.model_name).is_encoder_decoder
|
| 748 |
+
else AutoPeftModelForCausalLM
|
| 749 |
+
)
|
| 750 |
+
|
| 751 |
+
self.model = model_class.from_pretrained(
|
| 752 |
+
pretrained_model_name_or_path=self.peft_config.base_model_name_or_path,
|
| 753 |
+
trust_remote_code=True,
|
| 754 |
+
device_map=self.device_map,
|
| 755 |
+
low_cpu_mem_usage=self.low_cpu_mem_usage,
|
| 756 |
+
torch_dtype=self._get_torch_dtype(),
|
| 757 |
+
)
|
| 758 |
+
if self.device_map is None:
|
| 759 |
+
self.model.to(self.device)
|
| 760 |
+
|
| 761 |
+
|
| 762 |
+
@deprecation(
|
| 763 |
+
version="2.0.0", msg=" Use non-pipeline-based 'HFInferenceEngine' instead."
|
| 764 |
+
)
|
| 765 |
+
class HFPipelineBasedInferenceEngine(
|
| 766 |
+
InferenceEngine, PackageRequirementsMixin, LazyLoadMixin, HFGenerationParamsMixin
|
| 767 |
+
):
|
| 768 |
+
model_name: str
|
| 769 |
+
label: str = "hf_pipeline_inference_engine"
|
| 770 |
+
|
| 771 |
+
use_fast_tokenizer: bool = True
|
| 772 |
+
use_fp16: bool = True
|
| 773 |
+
load_in_8bit: bool = False
|
| 774 |
+
|
| 775 |
+
task: Optional[str] = None
|
| 776 |
+
|
| 777 |
+
device: Any = None
|
| 778 |
+
device_map: Any = None
|
| 779 |
+
|
| 780 |
+
pipe: Any = InternalField(default=None)
|
| 781 |
+
|
| 782 |
+
_requirements_list = {
|
| 783 |
+
"transformers": "Install huggingface package using 'pip install --upgrade transformers",
|
| 784 |
+
"torch": "Install torch, go on PyTorch website for mode details.",
|
| 785 |
+
"accelerate": "pip install accelerate",
|
| 786 |
+
}
|
| 787 |
+
|
| 788 |
+
def _is_loaded(self):
|
| 789 |
+
return hasattr(self, "model") and self.model is not None
|
| 790 |
+
|
| 791 |
+
def get_engine_id(self):
|
| 792 |
+
return get_model_and_label_id(self.model_name, "hf_pipeline")
|
| 793 |
+
|
| 794 |
+
def _define_task(self):
|
| 795 |
+
from transformers import AutoConfig
|
| 796 |
+
|
| 797 |
+
self.task = (
|
| 798 |
+
"text2text-generation"
|
| 799 |
+
if AutoConfig.from_pretrained(
|
| 800 |
+
self.model_name, trust_remote_code=True
|
| 801 |
+
).is_encoder_decoder
|
| 802 |
+
else "text-generation"
|
| 803 |
+
)
|
| 804 |
+
|
| 805 |
+
def _get_model_args(self) -> Dict[str, Any]:
|
| 806 |
+
import torch
|
| 807 |
+
from transformers import BitsAndBytesConfig
|
| 808 |
+
|
| 809 |
+
args = {}
|
| 810 |
+
|
| 811 |
+
if self.load_in_8bit:
|
| 812 |
+
quantization_config = BitsAndBytesConfig(load_in_8bit=self.load_in_8bit)
|
| 813 |
+
args["quantization_config"] = quantization_config
|
| 814 |
+
elif self.use_fp16:
|
| 815 |
+
if self.device == torch.device("mps"):
|
| 816 |
+
args["torch_dtype"] = torch.float16
|
| 817 |
+
else:
|
| 818 |
+
args["torch_dtype"] = torch.bfloat16
|
| 819 |
+
|
| 820 |
+
# We do this, because in some cases, using device:auto will offload some weights to the cpu
|
| 821 |
+
# (even though the model might *just* fit to a single gpu), even if there is a gpu available, and this will
|
| 822 |
+
# cause an error because the data is always on the gpu
|
| 823 |
+
if torch.cuda.device_count() > 1:
|
| 824 |
+
assert self.device == torch.device(0)
|
| 825 |
+
args["device_map"] = "auto"
|
| 826 |
+
else:
|
| 827 |
+
if not self.load_in_8bit:
|
| 828 |
+
args["device"] = self.device
|
| 829 |
+
|
| 830 |
+
if self.task == "text-generation":
|
| 831 |
+
args["return_full_text"] = False
|
| 832 |
+
|
| 833 |
+
return args
|
| 834 |
+
|
| 835 |
+
def _create_pipeline(self, model_args: Dict[str, Any]):
|
| 836 |
+
from transformers import pipeline
|
| 837 |
+
|
| 838 |
+
self.model = pipeline(
|
| 839 |
+
model=self.model_name,
|
| 840 |
+
task=self.task,
|
| 841 |
+
use_fast=self.use_fast_tokenizer,
|
| 842 |
+
trust_remote_code=True,
|
| 843 |
+
**model_args,
|
| 844 |
+
**self.to_dict(
|
| 845 |
+
[HFGenerationParamsMixin],
|
| 846 |
+
keep_empty=False,
|
| 847 |
+
),
|
| 848 |
+
)
|
| 849 |
+
|
| 850 |
+
def _set_inference_device(self):
|
| 851 |
+
if self.device is not None and self.device_map is not None:
|
| 852 |
+
raise ValueError(
|
| 853 |
+
f"You must specify either 'device' or 'device_map', however both "
|
| 854 |
+
f"were given: 'device={self.device}', 'device_map={self.device_map}'."
|
| 855 |
+
)
|
| 856 |
+
|
| 857 |
+
if self.device is None and self.device_map is None:
|
| 858 |
+
import torch
|
| 859 |
+
|
| 860 |
+
self.device = torch.device(
|
| 861 |
+
"mps"
|
| 862 |
+
if torch.backends.mps.is_available()
|
| 863 |
+
else 0
|
| 864 |
+
if torch.cuda.is_available()
|
| 865 |
+
else "cpu"
|
| 866 |
+
)
|
| 867 |
+
|
| 868 |
+
def _prepare_engine(self):
|
| 869 |
+
self._set_inference_device()
|
| 870 |
+
if self.task is None:
|
| 871 |
+
self._define_task()
|
| 872 |
+
model_args = self._get_model_args()
|
| 873 |
+
self._create_pipeline(model_args)
|
| 874 |
+
|
| 875 |
+
def prepare_engine(self):
|
| 876 |
+
if not self.lazy_load:
|
| 877 |
+
self._prepare_engine()
|
| 878 |
+
|
| 879 |
+
def _infer(
|
| 880 |
+
self,
|
| 881 |
+
dataset: Union[List[Dict[str, Any]], DatasetDict],
|
| 882 |
+
return_meta_data: bool = False,
|
| 883 |
+
) -> Union[List[str], List[TextGenerationInferenceOutput]]:
|
| 884 |
+
if not self._is_loaded():
|
| 885 |
+
self._prepare_engine()
|
| 886 |
+
|
| 887 |
+
outputs = self.model([instance["source"] for instance in dataset])
|
| 888 |
+
|
| 889 |
+
return [
|
| 890 |
+
self.get_return_object(output[0], instance["source"], return_meta_data)
|
| 891 |
+
if isinstance(output, list)
|
| 892 |
+
else self.get_return_object(output, instance["source"], return_meta_data)
|
| 893 |
+
for output, instance in zip(outputs, dataset)
|
| 894 |
+
]
|
| 895 |
+
|
| 896 |
+
def get_return_object(self, output, inp, return_meta_data):
|
| 897 |
+
if return_meta_data:
|
| 898 |
+
return TextGenerationInferenceOutput(
|
| 899 |
+
prediction=output["generated_text"],
|
| 900 |
+
model_name=self.model_name,
|
| 901 |
+
inference_type=self.label,
|
| 902 |
+
input_text=inp,
|
| 903 |
+
)
|
| 904 |
+
return output["generated_text"]
|
| 905 |
+
|
| 906 |
+
|
| 907 |
+
def mock_logprobs_default_value_factory() -> List[Dict[str, Any]]:
|
| 908 |
+
return [
|
| 909 |
+
{
|
| 910 |
+
"logprob": -1,
|
| 911 |
+
"text": "[[10]]",
|
| 912 |
+
"top_tokens": [
|
| 913 |
+
{"logprob": -1, "text": "[[10]]"},
|
| 914 |
+
],
|
| 915 |
+
}
|
| 916 |
+
]
|
| 917 |
+
|
| 918 |
+
|
| 919 |
+
class MockInferenceEngine(InferenceEngine, LogProbInferenceEngine):
|
| 920 |
+
model_name: str
|
| 921 |
+
default_inference_value: str = "[[10]]"
|
| 922 |
+
default_inference_value_logprob: List[Dict[str, Any]] = dataclasses.field(
|
| 923 |
+
default_factory=mock_logprobs_default_value_factory,
|
| 924 |
+
)
|
| 925 |
+
label: str = "mock_inference_engine"
|
| 926 |
+
|
| 927 |
+
def get_engine_id(self):
|
| 928 |
+
return get_model_and_label_id(self.model_name, "mock")
|
| 929 |
+
|
| 930 |
+
def prepare_engine(self):
|
| 931 |
+
return
|
| 932 |
+
|
| 933 |
+
def _mock_infer(
|
| 934 |
+
self,
|
| 935 |
+
dataset: Union[List[Dict[str, Any]], DatasetDict],
|
| 936 |
+
) -> Union[List[str], List[TextGenerationInferenceOutput]]:
|
| 937 |
+
return [self.default_inference_value for _ in dataset]
|
| 938 |
+
|
| 939 |
+
def _infer(
|
| 940 |
+
self,
|
| 941 |
+
dataset: Union[List[Dict[str, Any]], DatasetDict],
|
| 942 |
+
return_meta_data: bool = False,
|
| 943 |
+
) -> Union[List[str], List[TextGenerationInferenceOutput]]:
|
| 944 |
+
return [
|
| 945 |
+
self.get_return_object(
|
| 946 |
+
self.default_inference_value, instance, return_meta_data
|
| 947 |
+
)
|
| 948 |
+
for instance in dataset
|
| 949 |
+
]
|
| 950 |
+
|
| 951 |
+
def _infer_log_probs(
|
| 952 |
+
self,
|
| 953 |
+
dataset: Union[List[Dict[str, Any]], DatasetDict],
|
| 954 |
+
return_meta_data: bool = False,
|
| 955 |
+
) -> Union[List[Dict], List[TextGenerationInferenceOutput]]:
|
| 956 |
+
return [
|
| 957 |
+
self.get_return_object(
|
| 958 |
+
self.default_inference_value_logprob, instance, return_meta_data
|
| 959 |
+
)
|
| 960 |
+
for instance in dataset
|
| 961 |
+
]
|
| 962 |
+
|
| 963 |
+
def get_return_object(self, predict_result, instance, return_meta_data):
|
| 964 |
+
if return_meta_data:
|
| 965 |
+
return TextGenerationInferenceOutput(
|
| 966 |
+
prediction=predict_result,
|
| 967 |
+
input_tokens=len(instance["source"]),
|
| 968 |
+
output_tokens=len(predict_result),
|
| 969 |
+
model_name=self.model_name,
|
| 970 |
+
inference_type=self.label,
|
| 971 |
+
input_text=instance["source"],
|
| 972 |
+
seed=111,
|
| 973 |
+
stop_reason="",
|
| 974 |
+
)
|
| 975 |
+
return predict_result
|
| 976 |
+
|
| 977 |
+
|
| 978 |
+
class MockModeMixin(Artifact):
|
| 979 |
+
mock_mode: bool = False
|
| 980 |
+
|
| 981 |
+
|
| 982 |
+
class IbmGenAiInferenceEngineParamsMixin(Artifact):
|
| 983 |
+
beam_width: Optional[int] = None
|
| 984 |
+
decoding_method: Optional[Literal["greedy", "sample"]] = None
|
| 985 |
+
include_stop_sequence: Optional[bool] = None
|
| 986 |
+
length_penalty: Any = None
|
| 987 |
+
max_new_tokens: Optional[int] = None
|
| 988 |
+
min_new_tokens: Optional[int] = None
|
| 989 |
+
random_seed: Optional[int] = None
|
| 990 |
+
repetition_penalty: Optional[float] = None
|
| 991 |
+
return_options: Any = None
|
| 992 |
+
stop_sequences: Optional[List[str]] = None
|
| 993 |
+
temperature: Optional[float] = None
|
| 994 |
+
time_limit: Optional[int] = None
|
| 995 |
+
top_k: Optional[int] = None
|
| 996 |
+
top_p: Optional[float] = None
|
| 997 |
+
truncate_input_tokens: Optional[int] = None
|
| 998 |
+
typical_p: Optional[float] = None
|
| 999 |
+
|
| 1000 |
+
|
| 1001 |
+
@deprecation(version="2.0.0", alternative=IbmGenAiInferenceEngineParamsMixin)
|
| 1002 |
+
class IbmGenAiInferenceEngineParams(Artifact):
|
| 1003 |
+
beam_width: Optional[int] = None
|
| 1004 |
+
decoding_method: Optional[Literal["greedy", "sample"]] = None
|
| 1005 |
+
include_stop_sequence: Optional[bool] = None
|
| 1006 |
+
length_penalty: Any = None
|
| 1007 |
+
max_new_tokens: Optional[int] = None
|
| 1008 |
+
min_new_tokens: Optional[int] = None
|
| 1009 |
+
random_seed: Optional[int] = None
|
| 1010 |
+
repetition_penalty: Optional[float] = None
|
| 1011 |
+
return_options: Any = None
|
| 1012 |
+
stop_sequences: Optional[List[str]] = None
|
| 1013 |
+
temperature: Optional[float] = None
|
| 1014 |
+
time_limit: Optional[int] = None
|
| 1015 |
+
top_k: Optional[int] = None
|
| 1016 |
+
top_p: Optional[float] = None
|
| 1017 |
+
truncate_input_tokens: Optional[int] = None
|
| 1018 |
+
typical_p: Optional[float] = None
|
| 1019 |
+
|
| 1020 |
+
|
| 1021 |
+
class GenericInferenceEngine(
|
| 1022 |
+
InferenceEngine, ArtifactFetcherMixin, LogProbInferenceEngine
|
| 1023 |
+
):
|
| 1024 |
+
default: Optional[str] = None
|
| 1025 |
+
|
| 1026 |
+
def prepare_engine(self):
|
| 1027 |
+
if "UNITXT_INFERENCE_ENGINE" in os.environ:
|
| 1028 |
+
engine_reference = os.environ["UNITXT_INFERENCE_ENGINE"]
|
| 1029 |
+
else:
|
| 1030 |
+
assert self.default is not None, (
|
| 1031 |
+
"GenericInferenceEngine could not be initialized"
|
| 1032 |
+
'\nThis is since both the "UNITXT_INFERENCE_ENGINE" environmental variable is not set and no default engine was not inputted.'
|
| 1033 |
+
"\nFor example, you can fix it by setting"
|
| 1034 |
+
"\nexport UNITXT_INFERENCE_ENGINE=engines.ibm_gen_ai.llama_3_70b_instruct"
|
| 1035 |
+
"\nto your ~/.bashrc"
|
| 1036 |
+
"\nor passing a similar required engine in the default argument"
|
| 1037 |
+
)
|
| 1038 |
+
engine_reference = self.default
|
| 1039 |
+
self.engine = self.get_artifact(engine_reference)
|
| 1040 |
+
|
| 1041 |
+
def get_engine_id(self):
|
| 1042 |
+
# If mock_inference_mode is set, no engine is prepared.
|
| 1043 |
+
if hasattr(self, "engine"):
|
| 1044 |
+
return f"generic_{self.engine.get_engine_id()}"
|
| 1045 |
+
return "generic_inference_engine"
|
| 1046 |
+
|
| 1047 |
+
def _infer(
|
| 1048 |
+
self,
|
| 1049 |
+
dataset: Union[List[Dict[str, Any]], DatasetDict],
|
| 1050 |
+
return_meta_data: bool = False,
|
| 1051 |
+
) -> Union[List[str], List[TextGenerationInferenceOutput]]:
|
| 1052 |
+
return self.engine._infer(dataset)
|
| 1053 |
+
|
| 1054 |
+
def _infer_log_probs(
|
| 1055 |
+
self,
|
| 1056 |
+
dataset: Union[List[Dict[str, Any]], DatasetDict],
|
| 1057 |
+
return_meta_data: bool = False,
|
| 1058 |
+
) -> Union[List[str], List[TextGenerationInferenceOutput]]:
|
| 1059 |
+
if not isinstance(self.engine, LogProbInferenceEngine):
|
| 1060 |
+
raise NotImplementedError(
|
| 1061 |
+
f"Error in infer: inference engine used by the GenericInferenceEngine"
|
| 1062 |
+
f"({self.engine.__class__.__name__}) does not support logprobs."
|
| 1063 |
+
)
|
| 1064 |
+
return self.engine._infer_log_probs(dataset)
|
| 1065 |
+
|
| 1066 |
+
|
| 1067 |
+
class OllamaInferenceEngine(
|
| 1068 |
+
InferenceEngine, StandardAPIParamsMixin, PackageRequirementsMixin
|
| 1069 |
+
):
|
| 1070 |
+
label: str = "ollama"
|
| 1071 |
+
_requirements_list = {
|
| 1072 |
+
"ollama": "Install ollama package using 'pip install --upgrade ollama"
|
| 1073 |
+
}
|
| 1074 |
+
data_classification_policy = ["public", "proprietary"]
|
| 1075 |
+
|
| 1076 |
+
def get_engine_id(self):
|
| 1077 |
+
return get_model_and_label_id(self.model, self.label)
|
| 1078 |
+
|
| 1079 |
+
def prepare_engine(self):
|
| 1080 |
+
pass
|
| 1081 |
+
|
| 1082 |
+
def _infer(
|
| 1083 |
+
self,
|
| 1084 |
+
dataset: Union[List[Dict[str, Any]], DatasetDict],
|
| 1085 |
+
return_meta_data: bool = False,
|
| 1086 |
+
) -> Union[List[str], List[TextGenerationInferenceOutput]]:
|
| 1087 |
+
import ollama
|
| 1088 |
+
|
| 1089 |
+
args = self.to_dict([StandardAPIParamsMixin])
|
| 1090 |
+
|
| 1091 |
+
results = []
|
| 1092 |
+
|
| 1093 |
+
for instance in dataset:
|
| 1094 |
+
messages = self.to_messages(instance)
|
| 1095 |
+
response = ollama.chat(
|
| 1096 |
+
model=self.model,
|
| 1097 |
+
messages=messages,
|
| 1098 |
+
**args,
|
| 1099 |
+
)
|
| 1100 |
+
results.append(response)
|
| 1101 |
+
|
| 1102 |
+
return [element["message"]["content"] for element in results]
|
| 1103 |
+
|
| 1104 |
+
|
| 1105 |
+
class OptionSelectingByLogProbsInferenceEngine:
|
| 1106 |
+
"""OptionSelectingByLogProbsInferenceEngine inference engine is used to select an option based on the logprobs of an options list conditioned by a prompt.
|
| 1107 |
+
|
| 1108 |
+
The inference engines that inherit from this class must implement `get_token_count` and `get_options_log_probs`.
|
| 1109 |
+
"""
|
| 1110 |
+
|
| 1111 |
+
@abc.abstractmethod
|
| 1112 |
+
def get_token_count(self, dataset):
|
| 1113 |
+
"""Get the token count of the source key of each dict of the dataset. Add to each instance in the data a "token_count" field.
|
| 1114 |
+
|
| 1115 |
+
Args:
|
| 1116 |
+
dataset (List[Dict[str, Any]]): A list of dictionaries, each representing a data instance.
|
| 1117 |
+
|
| 1118 |
+
Returns:
|
| 1119 |
+
List[int]: The token count of the texts
|
| 1120 |
+
"""
|
| 1121 |
+
|
| 1122 |
+
@abc.abstractmethod
|
| 1123 |
+
def get_options_log_probs(self, dataset):
|
| 1124 |
+
"""Get the token logprobs of the options of the key task_data.options of each dict of the dataset.
|
| 1125 |
+
|
| 1126 |
+
Add to each instance in the data a "options_log_prob" field, which is a dict with str as key and a list of {text: str, logprob:float}.
|
| 1127 |
+
|
| 1128 |
+
Args:
|
| 1129 |
+
dataset (List[Dict[str, Any]]): A list of dictionaries, each representing a data instance.
|
| 1130 |
+
|
| 1131 |
+
Returns:
|
| 1132 |
+
List[int]: The token count of the texts
|
| 1133 |
"""
|
| 1134 |
|
| 1135 |
def select(self, dataset: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
|
|
|
|
| 1213 |
}
|
| 1214 |
data_classification_policy = ["public", "proprietary"]
|
| 1215 |
parameters: Optional[IbmGenAiInferenceEngineParams] = None
|
| 1216 |
+
rate_limit: int = 10
|
| 1217 |
|
| 1218 |
def get_engine_id(self):
|
| 1219 |
return get_model_and_label_id(self.model_name, self.label)
|
| 1220 |
|
| 1221 |
+
@staticmethod
|
| 1222 |
+
def _get_credentials():
|
| 1223 |
+
from genai import Credentials
|
| 1224 |
|
| 1225 |
api_key_env_var_name = "GENAI_KEY"
|
| 1226 |
api_key = os.environ.get(api_key_env_var_name)
|
|
|
|
| 1229 |
f"Error while trying to run IbmGenAiInferenceEngine."
|
| 1230 |
f" Please set the environment param '{api_key_env_var_name}'."
|
| 1231 |
)
|
| 1232 |
+
|
| 1233 |
+
return Credentials(api_key=api_key)
|
| 1234 |
+
|
| 1235 |
+
def prepare_engine(self):
|
| 1236 |
+
self.check_missing_requirements()
|
| 1237 |
+
|
| 1238 |
+
from genai import Client
|
| 1239 |
+
from genai.text.generation import CreateExecutionOptions
|
| 1240 |
+
|
| 1241 |
+
credentials = self._get_credentials()
|
| 1242 |
self.client = Client(credentials=credentials)
|
| 1243 |
|
| 1244 |
+
self.execution_options = CreateExecutionOptions(
|
| 1245 |
+
concurrency_limit=self.rate_limit
|
| 1246 |
+
)
|
| 1247 |
+
|
| 1248 |
self._set_inference_parameters()
|
| 1249 |
|
| 1250 |
def _infer(
|
|
|
|
| 1252 |
dataset: Union[List[Dict[str, Any]], DatasetDict],
|
| 1253 |
return_meta_data: bool = False,
|
| 1254 |
) -> Union[List[str], List[TextGenerationInferenceOutput]]:
|
| 1255 |
+
from genai.schema import TextGenerationParameters, TextGenerationResult
|
| 1256 |
+
|
| 1257 |
+
self.verify_not_chat_api(dataset)
|
| 1258 |
|
| 1259 |
genai_params = TextGenerationParameters(
|
| 1260 |
**self.to_dict([IbmGenAiInferenceEngineParamsMixin])
|
| 1261 |
)
|
| 1262 |
|
|
|
|
| 1263 |
responses = self.client.text.generation.create(
|
| 1264 |
model_id=self.model_name,
|
| 1265 |
inputs=[instance["source"] for instance in dataset],
|
| 1266 |
parameters=genai_params,
|
| 1267 |
+
execution_options=self.execution_options,
|
| 1268 |
)
|
| 1269 |
+
|
| 1270 |
+
results = []
|
| 1271 |
for response in responses:
|
| 1272 |
+
generation_result: TextGenerationResult = response.results[0]
|
| 1273 |
result = self.get_return_object(
|
| 1274 |
+
generation_result.generated_text, generation_result, return_meta_data
|
| 1275 |
)
|
| 1276 |
results.append(result)
|
| 1277 |
return results
|
|
|
|
| 1281 |
dataset: Union[List[Dict[str, Any]], DatasetDict],
|
| 1282 |
return_meta_data: bool = False,
|
| 1283 |
) -> Union[List[Dict], List[TextGenerationInferenceOutput]]:
|
| 1284 |
+
from genai.schema import TextGenerationParameters, TextGenerationResult
|
| 1285 |
+
|
| 1286 |
+
self.verify_not_chat_api(dataset)
|
| 1287 |
|
| 1288 |
logprobs_return_options = {
|
| 1289 |
"generated_tokens": True,
|
|
|
|
| 1302 |
model_id=self.model_name,
|
| 1303 |
inputs=[instance["source"] for instance in dataset],
|
| 1304 |
parameters=genai_params,
|
| 1305 |
+
execution_options=self.execution_options,
|
| 1306 |
)
|
| 1307 |
|
| 1308 |
predict_results = []
|
| 1309 |
for prediction in predictions:
|
| 1310 |
+
result: TextGenerationResult = prediction.results[0]
|
| 1311 |
assert isinstance(
|
| 1312 |
result.generated_tokens, list
|
| 1313 |
), "result.generated_tokens should be a list"
|
|
|
|
| 1334 |
output_tokens=result.generated_token_count,
|
| 1335 |
model_name=self.model_name,
|
| 1336 |
inference_type=self.label,
|
| 1337 |
+
input_text=result.input_text,
|
| 1338 |
+
seed=self.random_seed,
|
| 1339 |
+
stop_reason=result.stop_reason,
|
| 1340 |
)
|
| 1341 |
return predict_result
|
| 1342 |
|
| 1343 |
+
def get_model_details(self) -> Dict:
|
| 1344 |
+
from genai import ApiClient
|
| 1345 |
+
from genai.model import ModelService
|
| 1346 |
+
|
| 1347 |
+
api_client = ApiClient(credentials=self._get_credentials())
|
| 1348 |
+
model_info = (
|
| 1349 |
+
ModelService(api_client=api_client).retrieve(id=self.model_name).result
|
| 1350 |
+
)
|
| 1351 |
+
return model_info.dict()
|
| 1352 |
+
|
| 1353 |
def get_token_count(self, dataset):
|
| 1354 |
texts = [instance["source"] for instance in dataset]
|
| 1355 |
token_counts = list(
|
|
|
|
| 1669 |
return OpenAI(api_key=api_key, base_url=api_url)
|
| 1670 |
|
| 1671 |
|
| 1672 |
+
@deprecation(
|
| 1673 |
+
version="2.0.0",
|
| 1674 |
+
msg=" You can specify inference parameters directly when initializing an inference engine.",
|
| 1675 |
+
)
|
| 1676 |
class WMLInferenceEngineParamsMixin(Artifact):
|
| 1677 |
decoding_method: Optional[Literal["greedy", "sample"]] = None
|
| 1678 |
length_penalty: Optional[Dict[str, Union[int, float]]] = None
|
|
|
|
| 1708 |
return_options: Optional[Dict[str, bool]] = None
|
| 1709 |
|
| 1710 |
|
| 1711 |
+
class WMLGenerationParamsMixin(Artifact):
|
| 1712 |
+
decoding_method: Optional[Literal["greedy", "sample"]] = None
|
| 1713 |
+
length_penalty: Optional[Dict[str, Union[int, float]]] = None
|
| 1714 |
+
temperature: Optional[float] = None
|
| 1715 |
+
top_p: Optional[float] = None
|
| 1716 |
+
top_k: Optional[int] = None
|
| 1717 |
+
random_seed: Optional[int] = None
|
| 1718 |
+
repetition_penalty: Optional[float] = None
|
| 1719 |
+
min_new_tokens: Optional[int] = None
|
| 1720 |
+
max_new_tokens: Optional[int] = None
|
| 1721 |
+
stop_sequences: Optional[List[str]] = None
|
| 1722 |
+
time_limit: Optional[int] = None
|
| 1723 |
+
truncate_input_tokens: Optional[int] = None
|
| 1724 |
+
prompt_variables: Optional[Dict[str, Any]] = None
|
| 1725 |
+
return_options: Optional[Dict[str, bool]] = None
|
| 1726 |
+
|
| 1727 |
+
|
| 1728 |
+
class WMLChatParamsMixin(Artifact):
|
| 1729 |
+
frequency_penalty: Optional[float] = None
|
| 1730 |
+
top_logprobs: Optional[int] = 5
|
| 1731 |
+
presence_penalty: Optional[float] = None
|
| 1732 |
+
response_format: Optional[Dict[str, Any]] = None
|
| 1733 |
+
temperature: Optional[float] = None
|
| 1734 |
+
max_tokens: Optional[int] = None
|
| 1735 |
+
time_limit: Optional[int] = None
|
| 1736 |
+
top_p: Optional[float] = None
|
| 1737 |
+
n: Optional[int] = None
|
| 1738 |
+
|
| 1739 |
+
|
| 1740 |
+
CredentialsWML = Dict[
|
| 1741 |
+
Literal["url", "username", "password", "apikey", "project_id", "space_id"], str
|
| 1742 |
+
]
|
| 1743 |
+
|
| 1744 |
+
|
| 1745 |
+
class WMLInferenceEngineBase(
|
| 1746 |
InferenceEngine,
|
|
|
|
| 1747 |
PackageRequirementsMixin,
|
| 1748 |
LogProbInferenceEngine,
|
| 1749 |
OptionSelectingByLogProbsInferenceEngine,
|
| 1750 |
):
|
| 1751 |
+
"""Base for classes running inference using ibm-watsonx-ai.
|
| 1752 |
|
| 1753 |
Attributes:
|
| 1754 |
credentials (Dict[str, str], optional): By default, it is created by a class
|
| 1755 |
instance which tries to retrieve proper environment variables
|
| 1756 |
+
("WML_URL", "WML_PROJECT_ID", "WML_SPACE_ID", "WML_APIKEY", "WML_USERNAME", "WML_PASSWORD").
|
| 1757 |
+
However, a dictionary with the following keys: "url", "apikey", "project_id", "space_id",
|
| 1758 |
+
"username", "password".
|
| 1759 |
+
can be directly provided instead.
|
| 1760 |
model_name (str, optional): ID of a model to be used for inference. Mutually
|
| 1761 |
exclusive with 'deployment_id'.
|
| 1762 |
deployment_id (str, optional): Deployment ID of a tuned model to be used for
|
| 1763 |
inference. Mutually exclusive with 'model_name'.
|
| 1764 |
+
parameters (Union[WMLInferenceEngineParams, WMLGenerationParamsMixin, WMLChatParamsMixin], optional):
|
| 1765 |
+
Defines inference parameters and their values. Deprecated attribute, please pass respective
|
| 1766 |
+
parameters directly to the respective class instead.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1767 |
"""
|
| 1768 |
|
| 1769 |
+
credentials: Optional[CredentialsWML] = None
|
| 1770 |
model_name: Optional[str] = None
|
| 1771 |
deployment_id: Optional[str] = None
|
| 1772 |
label: str = "wml"
|
| 1773 |
_requirements_list = {
|
| 1774 |
+
"ibm_watsonx_ai": "Install ibm-watsonx-ai package using 'pip install --upgrade ibm-watsonx-ai'. "
|
| 1775 |
"It is advised to have Python version >=3.10 installed, as at lower version this package "
|
| 1776 |
"may cause conflicts with other installed packages."
|
| 1777 |
}
|
| 1778 |
data_classification_policy = ["public", "proprietary"]
|
| 1779 |
+
parameters: Optional[
|
| 1780 |
+
Union[WMLInferenceEngineParams, WMLGenerationParamsMixin, WMLChatParamsMixin]
|
| 1781 |
+
] = None
|
| 1782 |
+
|
| 1783 |
_client: Any = InternalField(default=None, name="WML client")
|
| 1784 |
+
_model: Any = InternalField(default=None, name="WML model")
|
| 1785 |
|
| 1786 |
def get_engine_id(self):
|
| 1787 |
+
return get_model_and_label_id(self.model_name or self.deployment_id, self.label)
|
| 1788 |
|
| 1789 |
def verify(self):
|
| 1790 |
super().verify()
|
| 1791 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1792 |
assert (
|
| 1793 |
self.model_name
|
| 1794 |
or self.deployment_id
|
|
|
|
| 1804 |
data["credentials"][key] = value
|
| 1805 |
return data
|
| 1806 |
|
| 1807 |
+
def _initialize_wml_client(self):
|
| 1808 |
+
from ibm_watsonx_ai.client import APIClient
|
| 1809 |
+
|
| 1810 |
+
if self.credentials is None:
|
| 1811 |
+
self.credentials = self._read_wml_credentials_from_env()
|
| 1812 |
+
self._verify_wml_credentials(self.credentials)
|
| 1813 |
+
|
| 1814 |
+
client = APIClient(credentials=self.credentials)
|
| 1815 |
+
if "space_id" in self.credentials:
|
| 1816 |
+
client.set.default_space(self.credentials["space_id"])
|
| 1817 |
+
else:
|
| 1818 |
+
client.set.default_project(self.credentials["project_id"])
|
| 1819 |
+
return client
|
| 1820 |
+
|
| 1821 |
@staticmethod
|
| 1822 |
+
def _read_wml_credentials_from_env() -> CredentialsWML:
|
| 1823 |
+
credentials: CredentialsWML = {}
|
| 1824 |
+
|
| 1825 |
+
url = os.environ.get("WML_URL")
|
| 1826 |
+
assert url, (
|
| 1827 |
+
"Error while trying to run 'WMLInferenceEngine'. "
|
| 1828 |
+
"Please set the env variable: 'WML_URL'"
|
| 1829 |
)
|
| 1830 |
+
credentials["url"] = url
|
| 1831 |
|
| 1832 |
+
space_id = os.environ.get("WML_SPACE_ID")
|
| 1833 |
+
project_id = os.environ.get("WML_PROJECT_ID")
|
| 1834 |
+
if space_id and project_id:
|
| 1835 |
+
get_logger().warning(
|
| 1836 |
+
"Either 'WML_SPACE_ID' or 'WML_PROJECT_ID' need to be "
|
| 1837 |
+
"specified, however, both were found. 'WMLInferenceEngine' "
|
| 1838 |
+
"will use space by default. If it is not desired, then have "
|
| 1839 |
+
"only one of those defined in the env."
|
| 1840 |
+
)
|
| 1841 |
+
credentials["space_id"] = space_id
|
| 1842 |
+
elif project_id:
|
| 1843 |
+
credentials["project_id"] = project_id
|
| 1844 |
+
else:
|
| 1845 |
+
raise AssertionError(
|
| 1846 |
+
"Error while trying to run 'WMLInferenceEngine'. "
|
| 1847 |
+
"Please set either 'WML_SPACE_ID' or 'WML_PROJECT_ID' env "
|
| 1848 |
+
"variable."
|
| 1849 |
+
)
|
| 1850 |
+
|
| 1851 |
+
apikey = os.environ.get("WML_APIKEY")
|
| 1852 |
+
username = os.environ.get("WML_USERNAME")
|
| 1853 |
+
password = os.environ.get("WML_PASSWORD")
|
| 1854 |
+
|
| 1855 |
+
if apikey and username and password:
|
| 1856 |
+
get_logger().warning(
|
| 1857 |
+
"Either 'WML_APIKEY' or both 'WML_USERNAME' and 'WML_PASSWORD' "
|
| 1858 |
+
"need to be specified, however, all of them were found. "
|
| 1859 |
+
"'WMLInferenceEngine' will use api key only by default. If it is not "
|
| 1860 |
+
"desired, then have only one of those options defined in the env."
|
| 1861 |
)
|
| 1862 |
|
| 1863 |
+
if apikey:
|
| 1864 |
+
credentials["apikey"] = apikey
|
| 1865 |
+
elif username and password:
|
| 1866 |
+
credentials["username"] = username
|
| 1867 |
+
credentials["password"] = password
|
| 1868 |
+
else:
|
| 1869 |
+
raise AssertionError(
|
| 1870 |
+
"Error while trying to run 'WMLInferenceEngine'. "
|
| 1871 |
+
"Please set either 'WML_APIKEY' or both 'WML_USERNAME' and "
|
| 1872 |
+
"'WML_PASSWORD' env variables."
|
| 1873 |
+
)
|
| 1874 |
|
| 1875 |
return credentials
|
| 1876 |
|
| 1877 |
+
@staticmethod
|
| 1878 |
+
def _verify_wml_credentials(credentials: CredentialsWML) -> None:
|
| 1879 |
+
assert isoftype(credentials, CredentialsWML), (
|
| 1880 |
+
"WML credentials object must be a dictionary which may "
|
| 1881 |
+
"contain only the following keys: "
|
| 1882 |
+
"['url', 'apikey', 'username', 'password']."
|
| 1883 |
+
)
|
| 1884 |
|
| 1885 |
+
assert credentials.get(
|
| 1886 |
+
"url"
|
| 1887 |
+
), "'url' is a mandatory key for WML credentials dict."
|
| 1888 |
+
assert "space_id" in credentials or "project_id" in credentials, (
|
| 1889 |
+
"Either 'space_id' or 'project_id' must be provided "
|
| 1890 |
+
"as keys for WML credentials dict."
|
| 1891 |
+
)
|
| 1892 |
+
assert "apikey" in credentials or (
|
| 1893 |
+
"username" in credentials and "password" in credentials
|
| 1894 |
+
), (
|
| 1895 |
+
"Either 'apikey' or both 'username' and 'password' must be provided "
|
| 1896 |
+
"as keys for WML credentials dict."
|
| 1897 |
+
)
|
| 1898 |
|
| 1899 |
def prepare_engine(self):
|
| 1900 |
+
self.check_missing_requirements()
|
| 1901 |
+
|
| 1902 |
self._client = self._initialize_wml_client()
|
| 1903 |
|
| 1904 |
self._set_inference_parameters()
|
| 1905 |
|
| 1906 |
+
def _load_model(self):
|
| 1907 |
+
from ibm_watsonx_ai.foundation_models.inference import ModelInference
|
| 1908 |
|
| 1909 |
+
self._model = ModelInference(
|
| 1910 |
model_id=self.model_name,
|
| 1911 |
deployment_id=self.deployment_id,
|
| 1912 |
api_client=self._client,
|
| 1913 |
)
|
|
|
|
| 1914 |
|
| 1915 |
+
@abc.abstractmethod
|
| 1916 |
+
def _send_requests(
|
| 1917 |
+
self,
|
| 1918 |
+
dataset: Union[List[Dict[str, Any]], DatasetDict],
|
| 1919 |
+
return_logprobs: bool,
|
| 1920 |
+
return_meta_data: bool,
|
| 1921 |
+
) -> Union[List[str], List[Dict], List[TextGenerationInferenceOutput]]:
|
| 1922 |
+
raise NotImplementedError(
|
| 1923 |
+
f"The class '{self.get_pretty_print_name()}' is an abstract class. "
|
| 1924 |
+
f"Please used either 'WMLInferenceEngineGeneration' or "
|
| 1925 |
+
f"'WMLInferenceEngineChat' instead, depending on your task."
|
| 1926 |
+
)
|
| 1927 |
|
| 1928 |
def _infer(
|
| 1929 |
self,
|
| 1930 |
dataset: Union[List[Dict[str, Any]], DatasetDict],
|
| 1931 |
return_meta_data: bool = False,
|
| 1932 |
) -> Union[List[str], List[TextGenerationInferenceOutput]]:
|
| 1933 |
+
if self._model is None:
|
| 1934 |
+
self._load_model()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1935 |
|
| 1936 |
+
return self._send_requests(
|
| 1937 |
+
dataset=dataset,
|
| 1938 |
+
return_logprobs=False,
|
| 1939 |
+
return_meta_data=return_meta_data,
|
| 1940 |
+
)
|
| 1941 |
|
| 1942 |
def _infer_log_probs(
|
| 1943 |
self,
|
| 1944 |
dataset: Union[List[Dict[str, Any]], DatasetDict],
|
| 1945 |
return_meta_data: bool = False,
|
| 1946 |
) -> Union[List[Dict], List[TextGenerationInferenceOutput]]:
|
| 1947 |
+
if self._model is None:
|
| 1948 |
+
self._load_model()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1949 |
|
| 1950 |
+
return self._send_requests(
|
| 1951 |
+
dataset=dataset,
|
| 1952 |
+
return_logprobs=True,
|
| 1953 |
+
return_meta_data=return_meta_data,
|
| 1954 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1955 |
|
| 1956 |
+
@abc.abstractmethod
|
| 1957 |
+
def get_return_object(self, predict_result, result, input_text, return_meta_data):
|
| 1958 |
+
raise NotImplementedError
|
| 1959 |
+
|
| 1960 |
+
def get_model_details(self) -> Dict:
|
| 1961 |
+
return self._model.get_details()
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1962 |
|
| 1963 |
def get_token_count(self, dataset):
|
| 1964 |
+
if self._model is None:
|
| 1965 |
+
self._load_model()
|
| 1966 |
|
| 1967 |
texts = [instance["source"] for instance in dataset]
|
| 1968 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1969 |
for i in trange(len(texts), desc="Tokenizing"):
|
| 1970 |
+
response = self._model.tokenize(prompt=texts[i], return_tokens=True)[
|
| 1971 |
+
"result"
|
| 1972 |
+
]
|
| 1973 |
dataset[i]["token_count"] = response["token_count"]
|
| 1974 |
|
| 1975 |
return dataset
|
| 1976 |
|
| 1977 |
def get_options_log_probs(self, dataset):
|
| 1978 |
"""Add to each instance in the data a "options_log_prob" field, which is a dict with str as key and a list of {text: str, logprob:float}."""
|
| 1979 |
+
if self._model is None:
|
| 1980 |
+
self._load_model()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1981 |
|
| 1982 |
texts = [x["source"] for x in dataset]
|
| 1983 |
|
| 1984 |
responses = list(
|
| 1985 |
tqdm(
|
| 1986 |
+
self._model.generate(
|
| 1987 |
prompt=texts,
|
| 1988 |
params={
|
| 1989 |
"decoding_method": "greedy",
|
|
|
|
| 2015 |
return dataset
|
| 2016 |
|
| 2017 |
|
| 2018 |
+
class WMLInferenceEngineGeneration(WMLInferenceEngineBase, WMLGenerationParamsMixin):
|
| 2019 |
+
"""Generates text for textual inputs.
|
| 2020 |
|
| 2021 |
+
If you want to include images in your input, please use 'WMLInferenceEngineChat' instead.
|
| 2022 |
|
| 2023 |
+
Attributes:
|
| 2024 |
+
concurrency_limit (int): Number of concurrent requests sent to a model. Default is 10,
|
| 2025 |
+
which is also the maximum value.
|
| 2026 |
|
| 2027 |
+
Examples:
|
| 2028 |
+
from .api import load_dataset
|
| 2029 |
|
| 2030 |
+
wml_credentials = {
|
| 2031 |
+
"url": "some_url", "project_id": "some_id", "api_key": "some_key"
|
| 2032 |
+
}
|
| 2033 |
+
model_name = "google/flan-t5-xxl"
|
| 2034 |
+
wml_inference = WMLInferenceEngineGeneration(
|
| 2035 |
+
credentials=wml_credentials,
|
| 2036 |
+
model_name=model_name,
|
| 2037 |
+
data_classification_policy=["public"],
|
| 2038 |
+
top_p=0.5,
|
| 2039 |
+
random_seed=123,
|
| 2040 |
+
)
|
| 2041 |
|
| 2042 |
+
dataset = load_dataset(
|
| 2043 |
+
dataset_query="card=cards.argument_topic,template_card_index=0,loader_limit=5"
|
| 2044 |
+
)
|
| 2045 |
+
results = wml_inference.infer(dataset["test"])
|
| 2046 |
+
"""
|
| 2047 |
|
| 2048 |
+
concurrency_limit: int = 10
|
|
|
|
| 2049 |
|
| 2050 |
+
def verify(self):
|
| 2051 |
+
super().verify()
|
|
|
|
| 2052 |
|
| 2053 |
+
assert (
|
| 2054 |
+
isinstance(self.concurrency_limit, int)
|
| 2055 |
+
and 1 <= self.concurrency_limit <= 10
|
| 2056 |
+
), (
|
| 2057 |
+
f"'concurrency_limit' must be a positive integer not greater than 10. "
|
| 2058 |
+
f"However, '{self.concurrency_limit}' was given."
|
| 2059 |
)
|
| 2060 |
|
| 2061 |
+
def _set_logprobs_params(self, params: Dict[str, Any]) -> Dict[str, Any]:
|
| 2062 |
+
user_return_options = params.pop("return_options", {})
|
| 2063 |
+
# currently this is the only configuration that returns generated
|
| 2064 |
+
# logprobs and behaves as expected
|
| 2065 |
+
logprobs_return_options = {
|
| 2066 |
+
"input_tokens": True,
|
| 2067 |
+
"generated_tokens": True,
|
| 2068 |
+
"token_logprobs": True,
|
| 2069 |
+
"top_n_tokens": user_return_options.get("top_n_tokens", 5),
|
| 2070 |
+
}
|
|
|
|
| 2071 |
|
| 2072 |
+
for key, value in logprobs_return_options.items():
|
| 2073 |
+
if key in user_return_options and user_return_options[key] != value:
|
| 2074 |
+
raise ValueError(
|
| 2075 |
+
f"'{key}={user_return_options[key]}' is not supported for the 'infer_log_probs' "
|
| 2076 |
+
f"method of {self.__class__.__name__}. For obtaining the logprobs of generated tokens "
|
| 2077 |
+
f"please use '{key}={value}'."
|
| 2078 |
+
)
|
| 2079 |
|
| 2080 |
+
return {
|
| 2081 |
+
**params,
|
| 2082 |
+
"return_options": logprobs_return_options,
|
| 2083 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2084 |
|
| 2085 |
+
def _send_requests(
|
| 2086 |
self,
|
| 2087 |
dataset: Union[List[Dict[str, Any]], DatasetDict],
|
| 2088 |
+
return_logprobs: bool,
|
| 2089 |
+
return_meta_data: bool,
|
| 2090 |
+
) -> Union[List[str], List[Dict], List[TextGenerationInferenceOutput]]:
|
| 2091 |
+
self.verify_not_chat_api(dataset)
|
| 2092 |
|
| 2093 |
+
params = self.to_dict([WMLGenerationParamsMixin], keep_empty=False)
|
| 2094 |
|
| 2095 |
+
if return_logprobs:
|
| 2096 |
+
generation_type = "generated_tokens"
|
| 2097 |
+
params = self._set_logprobs_params(params)
|
| 2098 |
+
else:
|
| 2099 |
+
generation_type = "generated_text"
|
| 2100 |
|
| 2101 |
+
inputs: List[str] = [instance["source"] for instance in dataset]
|
|
|
|
| 2102 |
|
| 2103 |
+
results = self._model.generate(
|
| 2104 |
+
prompt=inputs,
|
| 2105 |
+
params=params,
|
| 2106 |
+
concurrency_limit=self.concurrency_limit,
|
| 2107 |
+
)
|
| 2108 |
|
| 2109 |
+
final_results = []
|
| 2110 |
+
for result, inp in zip(results, inputs):
|
| 2111 |
+
result_metadata = result["results"][0]
|
| 2112 |
+
generated_content = result_metadata[generation_type]
|
| 2113 |
+
final_results.append(
|
| 2114 |
+
self.get_return_object(
|
| 2115 |
+
generated_content, result_metadata, inp, return_meta_data
|
| 2116 |
+
)
|
| 2117 |
)
|
| 2118 |
+
return final_results
|
| 2119 |
|
| 2120 |
+
def get_return_object(self, predict_result, result, input_text, return_meta_data):
|
| 2121 |
+
if return_meta_data:
|
| 2122 |
+
return TextGenerationInferenceOutput(
|
| 2123 |
+
prediction=predict_result,
|
| 2124 |
+
input_tokens=result["input_token_count"],
|
| 2125 |
+
output_tokens=result["generated_token_count"],
|
| 2126 |
+
model_name=self.model_name or self.deployment_id,
|
| 2127 |
+
inference_type=self.label,
|
| 2128 |
+
stop_reason=result["stop_reason"],
|
| 2129 |
+
seed=self.random_seed,
|
| 2130 |
+
input_text=input_text,
|
| 2131 |
)
|
| 2132 |
+
return predict_result
|
| 2133 |
+
|
| 2134 |
+
|
| 2135 |
+
class WMLInferenceEngineChat(WMLInferenceEngineBase, WMLChatParamsMixin):
|
| 2136 |
+
"""Creates chat session and returns a model's response.
|
| 2137 |
+
|
| 2138 |
+
You can also include images in your inputs. If you use only textual input, it is
|
| 2139 |
+
recommended to use 'WMLInferenceEngineGeneration' instead as it is faster, and allows
|
| 2140 |
+
more parameters for text generation.
|
| 2141 |
+
|
| 2142 |
+
You can provide either already formatted messages, or a raw dataset as an input.
|
| 2143 |
+
In case of the former, all passed images should be base64-encoded strings given as
|
| 2144 |
+
an 'image_url' within a message. Moreover, only one image per a list of messages
|
| 2145 |
+
may be sent.
|
| 2146 |
+
As for the latter, if there are multiple images per one instance, they will be sent
|
| 2147 |
+
separately with the same query. If that could possibly affect expected responses,
|
| 2148 |
+
concatenate images within an instance into a single image and adjust your query
|
| 2149 |
+
accordingly (if necessary).
|
| 2150 |
+
|
| 2151 |
+
Attributes:
|
| 2152 |
+
image_encoder (EncodeImageToString, optional): operator which encodes images in
|
| 2153 |
+
given format to base64 strings required by service. You should specify it when
|
| 2154 |
+
you are using images in your inputs.
|
| 2155 |
+
|
| 2156 |
+
Example:
|
| 2157 |
+
from .api import load_dataset
|
| 2158 |
+
from .image_operators
|
| 2159 |
+
|
| 2160 |
+
image_encoder = EncodeImageToString(image_format="JPEG")
|
| 2161 |
+
|
| 2162 |
+
wml_credentials = {
|
| 2163 |
+
"url": "some_url", "project_id": "some_id", "api_key": "some_key"
|
| 2164 |
+
}
|
| 2165 |
+
model_name = "meta-llama/llama-3-2-11b-vision-instruct"
|
| 2166 |
+
wml_inference = WMLInferenceEngineChat(
|
| 2167 |
+
credentials=wml_credentials,
|
| 2168 |
+
model_name=model_name,
|
| 2169 |
+
image_encoder=image_encoder,
|
| 2170 |
+
data_classification_policy=["public"],
|
| 2171 |
+
max_tokens=1024,
|
| 2172 |
+
)
|
| 2173 |
+
|
| 2174 |
+
dataset = load_dataset(
|
| 2175 |
+
dataset_query="card=cards.doc_vqa.en,template=templates.qa.with_context.with_type,loader_limit=30"
|
| 2176 |
+
)
|
| 2177 |
+
results = wml_inference.infer(dataset["test"])
|
| 2178 |
+
"""
|
| 2179 |
+
|
| 2180 |
+
image_encoder: Optional[EncodeImageToString] = None
|
| 2181 |
+
|
| 2182 |
+
@staticmethod
|
| 2183 |
+
def _extract_queries(instance: Dict[str, Any]) -> Tuple[Optional[str], List]:
|
| 2184 |
+
task_data = instance["task_data"]
|
| 2185 |
+
if isinstance(task_data, str):
|
| 2186 |
+
task_data = json.loads(task_data)
|
| 2187 |
+
question = task_data.get("question")
|
| 2188 |
+
|
| 2189 |
+
images = [None]
|
| 2190 |
+
if "images" in instance["media"]:
|
| 2191 |
+
images = extract_images(instance["source"], instance)
|
| 2192 |
+
|
| 2193 |
+
return question or instance["source"], images
|
| 2194 |
+
|
| 2195 |
+
def _create_messages_from_instance(
|
| 2196 |
+
self, instance: Dict[str, Any]
|
| 2197 |
+
) -> List[List[Dict[str, Any]]]:
|
| 2198 |
+
"""Method creates chat messages to be sent to a watsonx.ai model based on a given instance from a dataset."""
|
| 2199 |
+
text, images = self._extract_queries(instance)
|
| 2200 |
+
|
| 2201 |
+
messages: List[List[Dict[str, Any]]] = []
|
| 2202 |
+
base_message = {
|
| 2203 |
+
"role": "user",
|
| 2204 |
+
"content": [
|
| 2205 |
+
{
|
| 2206 |
+
"type": "text",
|
| 2207 |
+
"text": text,
|
| 2208 |
+
}
|
| 2209 |
+
],
|
| 2210 |
+
}
|
| 2211 |
+
|
| 2212 |
+
# Iteration over all possible images to create a separate message for
|
| 2213 |
+
# every single image, since SDK allows only one image per request.
|
| 2214 |
+
for image in images:
|
| 2215 |
+
message = base_message.copy()
|
| 2216 |
+
|
| 2217 |
+
if image is not None:
|
| 2218 |
+
encoded_image = image
|
| 2219 |
+
if not isinstance(encoded_image, str):
|
| 2220 |
+
if self.image_encoder is None:
|
| 2221 |
+
raise ValueError(
|
| 2222 |
+
"If sending image queries as well, and they are not "
|
| 2223 |
+
"already encoded to base64 strings, you must specify "
|
| 2224 |
+
"the 'image_encoder' to be used."
|
| 2225 |
+
)
|
| 2226 |
+
encoded_image = self.image_encoder.encode_image_to_base64(image)
|
| 2227 |
+
|
| 2228 |
+
message["content"].append(
|
| 2229 |
+
{
|
| 2230 |
+
"type": "image_url",
|
| 2231 |
+
"image_url": {
|
| 2232 |
+
"url": "data:image/jpeg;base64," + encoded_image,
|
| 2233 |
+
},
|
| 2234 |
+
}
|
| 2235 |
+
)
|
| 2236 |
+
|
| 2237 |
+
messages.append([message])
|
| 2238 |
+
|
| 2239 |
+
return messages
|
| 2240 |
+
|
| 2241 |
+
@staticmethod
|
| 2242 |
+
def verify_messages(messages: List[Dict[str, Any]]):
|
| 2243 |
+
"""Method verifies if externally provided messages containing images are compatible with the format required by ibm-watsonx-ai."""
|
| 2244 |
+
n_images = 0
|
| 2245 |
+
for message in messages:
|
| 2246 |
+
if isinstance(message["content"], str):
|
| 2247 |
+
continue
|
| 2248 |
+
|
| 2249 |
+
for content in message["content"]:
|
| 2250 |
+
if isinstance(content, dict):
|
| 2251 |
+
if "image" in content["type"] and content["type"] != "image_url":
|
| 2252 |
+
raise ValueError(
|
| 2253 |
+
f"ibm-watsonx-ai only supports sending images as base64-encoded "
|
| 2254 |
+
f"strings, which should be given as 'image_url' in a message. "
|
| 2255 |
+
f"However, '{content['type']}' was given."
|
| 2256 |
+
)
|
| 2257 |
+
|
| 2258 |
+
if content["type"] == "image_url":
|
| 2259 |
+
n_images += 1
|
| 2260 |
+
if n_images > 1:
|
| 2261 |
+
raise ValueError(
|
| 2262 |
+
"ibm-watsonx-ai only supports sending one image per a list "
|
| 2263 |
+
"of messages."
|
| 2264 |
+
)
|
| 2265 |
+
|
| 2266 |
+
def to_messages(self, instance: Union[Dict, List]) -> List[List[Dict[str, Any]]]:
|
| 2267 |
+
if isinstance(instance["source"], str) and "media" in instance:
|
| 2268 |
+
return self._create_messages_from_instance(instance)
|
| 2269 |
+
|
| 2270 |
+
messages = super().to_messages(instance)
|
| 2271 |
+
self.verify_messages(messages)
|
| 2272 |
+
# This is done to be compatible with inputs containing
|
| 2273 |
+
# images as SDK allows sending only one image per message.
|
| 2274 |
+
return [messages]
|
| 2275 |
+
|
| 2276 |
+
def _send_requests(
|
| 2277 |
+
self,
|
| 2278 |
+
dataset: Union[List[Dict[str, Any]], DatasetDict],
|
| 2279 |
+
return_logprobs: bool,
|
| 2280 |
+
return_meta_data: bool,
|
| 2281 |
+
) -> Union[List[str], List[Dict], List[TextGenerationInferenceOutput]]:
|
| 2282 |
+
params = self.to_dict([WMLChatParamsMixin], keep_empty=False)
|
| 2283 |
+
|
| 2284 |
+
if return_logprobs:
|
| 2285 |
+
output_type = "logprobs"
|
| 2286 |
+
params["logprobs"] = True
|
| 2287 |
+
else:
|
| 2288 |
+
output_type = "message"
|
| 2289 |
+
params["logprobs"] = False
|
| 2290 |
+
|
| 2291 |
+
final_results = []
|
| 2292 |
+
|
| 2293 |
+
for instance in dataset:
|
| 2294 |
+
messages = self.to_messages(instance)
|
| 2295 |
+
|
| 2296 |
+
for message in messages:
|
| 2297 |
+
result = self._model.chat(
|
| 2298 |
+
messages=message,
|
| 2299 |
+
params=params,
|
| 2300 |
+
)
|
| 2301 |
+
|
| 2302 |
+
final_results.append(
|
| 2303 |
+
self.get_return_object(
|
| 2304 |
+
result["choices"][0][output_type]["content"],
|
| 2305 |
+
result,
|
| 2306 |
+
instance["source"],
|
| 2307 |
+
return_meta_data,
|
| 2308 |
+
)
|
| 2309 |
+
)
|
| 2310 |
+
|
| 2311 |
+
return final_results
|
| 2312 |
+
|
| 2313 |
+
def get_return_object(self, predict_result, result, input_text, return_meta_data):
|
| 2314 |
+
if return_meta_data:
|
| 2315 |
+
return TextGenerationInferenceOutput(
|
| 2316 |
+
prediction=predict_result,
|
| 2317 |
+
input_tokens=result["usage"]["prompt_tokens"],
|
| 2318 |
+
output_tokens=len(predict_result)
|
| 2319 |
+
if isinstance(predict_result, list)
|
| 2320 |
+
else None,
|
| 2321 |
+
model_name=self.model_name or self.deployment_id,
|
| 2322 |
+
inference_type=self.label,
|
| 2323 |
+
stop_reason=result["choices"][0]["finish_reason"],
|
| 2324 |
+
input_text=input_text,
|
| 2325 |
)
|
| 2326 |
+
return predict_result
|
| 2327 |
|
| 2328 |
+
|
| 2329 |
+
@deprecation(
|
| 2330 |
+
version="2.0.0",
|
| 2331 |
+
msg=" Please use either 'WMLInferenceEngineGeneration' or 'WMLInferenceEngineChat'"
|
| 2332 |
+
" depending on your task.",
|
| 2333 |
+
)
|
| 2334 |
+
class WMLInferenceEngine(WMLInferenceEngineGeneration):
|
| 2335 |
+
def prepare_engine(self):
|
| 2336 |
+
super().prepare_engine()
|
| 2337 |
+
get_logger().warning("'WMLInferenceEngine' is deprecated")
|
| 2338 |
+
|
| 2339 |
+
|
| 2340 |
+
def get_images_without_text(instance):
|
| 2341 |
+
return extract_images(instance["source"], instance)
|
| 2342 |
+
|
| 2343 |
+
|
| 2344 |
+
def get_text_without_images(instance, image_token="<image>"):
|
| 2345 |
+
regex = r"<" + f"{constants.image_tag}" + r'\s+src=["\'](.*?)["\']\s*/?>'
|
| 2346 |
+
return re.sub(regex, image_token, instance["source"])
|
| 2347 |
|
| 2348 |
|
| 2349 |
class LMMSEvalBaseInferenceEngine(
|
|
|
|
| 2354 |
batch_size: int = 1
|
| 2355 |
image_token = "<image>"
|
| 2356 |
|
| 2357 |
+
_requirements_list = {
|
| 2358 |
+
"lmms_eval": "Install llms-eval package using 'pip install lmms-eval==0.2.4'",
|
| 2359 |
+
}
|
| 2360 |
|
| 2361 |
def prepare_engine(self):
|
| 2362 |
if not self.lazy_load:
|
|
|
|
| 2403 |
dataset: Union[List[Dict[str, Any]], DatasetDict],
|
| 2404 |
return_meta_data: bool = False,
|
| 2405 |
) -> Union[List[str], List[TextGenerationInferenceOutput]]:
|
|
|
|
| 2406 |
if not self._is_loaded():
|
| 2407 |
self._prepare_engine()
|
| 2408 |
|
llm_as_judge.py
CHANGED
|
@@ -1,3 +1,4 @@
|
|
|
|
|
| 1 |
from abc import abstractmethod
|
| 2 |
from typing import Any, Dict, List, Literal, Optional
|
| 3 |
|
|
@@ -23,7 +24,7 @@ def get_task_data_dict(task_data):
|
|
| 23 |
return json.loads(task_data) if isinstance(task_data, str) else task_data
|
| 24 |
|
| 25 |
|
| 26 |
-
class LLMAsJudgeBase(BulkInstanceMetric):
|
| 27 |
"""LLM-as-judge-base metric class for evaluating correctness of generated predictions.
|
| 28 |
|
| 29 |
Attributes:
|
|
@@ -122,7 +123,7 @@ class LLMAsJudgeBase(BulkInstanceMetric):
|
|
| 122 |
pass
|
| 123 |
|
| 124 |
|
| 125 |
-
class LLMAsJudge(LLMAsJudgeBase
|
| 126 |
"""LLM-as-judge-based metric class for evaluating correctness of generated predictions.
|
| 127 |
|
| 128 |
This class uses the source prompt given to the generator and the generator's predictions to evaluate
|
|
@@ -371,6 +372,17 @@ class TaskBasedLLMasJudge(LLMAsJudgeBase):
|
|
| 371 |
super().prepare()
|
| 372 |
self.reduction_map = {"mean": [self.main_score]}
|
| 373 |
self.score_prefix = f"{self.inference_model.get_engine_id()}_"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 374 |
|
| 375 |
def get_full_task_name(self):
|
| 376 |
return self.task
|
|
|
|
| 1 |
+
import re
|
| 2 |
from abc import abstractmethod
|
| 3 |
from typing import Any, Dict, List, Literal, Optional
|
| 4 |
|
|
|
|
| 24 |
return json.loads(task_data) if isinstance(task_data, str) else task_data
|
| 25 |
|
| 26 |
|
| 27 |
+
class LLMAsJudgeBase(BulkInstanceMetric, ArtifactFetcherMixin):
|
| 28 |
"""LLM-as-judge-base metric class for evaluating correctness of generated predictions.
|
| 29 |
|
| 30 |
Attributes:
|
|
|
|
| 123 |
pass
|
| 124 |
|
| 125 |
|
| 126 |
+
class LLMAsJudge(LLMAsJudgeBase):
|
| 127 |
"""LLM-as-judge-based metric class for evaluating correctness of generated predictions.
|
| 128 |
|
| 129 |
This class uses the source prompt given to the generator and the generator's predictions to evaluate
|
|
|
|
| 372 |
super().prepare()
|
| 373 |
self.reduction_map = {"mean": [self.main_score]}
|
| 374 |
self.score_prefix = f"{self.inference_model.get_engine_id()}_"
|
| 375 |
+
if not self.format:
|
| 376 |
+
self.set_format_for_inference_engine()
|
| 377 |
+
|
| 378 |
+
# if format is not directly set in constructor, choose according to the inference model
|
| 379 |
+
def set_format_for_inference_engine(self):
|
| 380 |
+
model_name = self.inference_model.get_engine_id()
|
| 381 |
+
if re.search("llama.?3.*instruct", model_name):
|
| 382 |
+
format_name = "formats.llama3_instruct"
|
| 383 |
+
else:
|
| 384 |
+
format_name = "formats.empty"
|
| 385 |
+
self.format = self.get_artifact(format_name)
|
| 386 |
|
| 387 |
def get_full_task_name(self):
|
| 388 |
return self.task
|
loaders.py
CHANGED
|
@@ -1,7 +1,7 @@
|
|
| 1 |
"""This section describes unitxt loaders.
|
| 2 |
|
| 3 |
Loaders: Generators of Unitxt Multistreams from existing date sources
|
| 4 |
-
|
| 5 |
|
| 6 |
Unitxt is all about readily preparing of any given data source for feeding into any given language model, and then,
|
| 7 |
post-processing the model's output, preparing it for any given evaluator.
|
|
@@ -16,14 +16,14 @@ All these loaders inherit from Loader, and hence, implementing a loader to expan
|
|
| 16 |
straightforward.
|
| 17 |
|
| 18 |
Available Loaders Overview:
|
| 19 |
-
- :
|
| 20 |
-
- :
|
| 21 |
-
- :
|
| 22 |
-
- :
|
| 23 |
-
- :
|
| 24 |
-
- :
|
| 25 |
-
- :
|
| 26 |
-
- :
|
| 27 |
|
| 28 |
|
| 29 |
|
|
|
|
| 1 |
"""This section describes unitxt loaders.
|
| 2 |
|
| 3 |
Loaders: Generators of Unitxt Multistreams from existing date sources
|
| 4 |
+
=====================================================================
|
| 5 |
|
| 6 |
Unitxt is all about readily preparing of any given data source for feeding into any given language model, and then,
|
| 7 |
post-processing the model's output, preparing it for any given evaluator.
|
|
|
|
| 16 |
straightforward.
|
| 17 |
|
| 18 |
Available Loaders Overview:
|
| 19 |
+
- :class:`LoadHF <unitxt.loaders.LoadHF>` - Loads data from HuggingFace Datasets.
|
| 20 |
+
- :class:`LoadCSV <unitxt.loaders.LoadCSV>` - Imports data from CSV (Comma-Separated Values) files.
|
| 21 |
+
- :class:`LoadFromKaggle <unitxt.loaders.LoadFromKaggle>` - Retrieves datasets from the Kaggle community site.
|
| 22 |
+
- :class:`LoadFromIBMCloud <unitxt.loaders.LoadFromIBMCloud>` - Fetches datasets hosted on IBM Cloud.
|
| 23 |
+
- :class:`LoadFromSklearn <unitxt.loaders.LoadFromSklearn>` - Loads datasets available through the sklearn library.
|
| 24 |
+
- :class:`MultipleSourceLoader <unitxt.loaders.MultipleSourceLoader>` - Combines data from multiple different sources.
|
| 25 |
+
- :class:`LoadFromDictionary <unitxt.loaders.LoadFromDictionary>` - Loads data from a user-defined Python dictionary.
|
| 26 |
+
- :class:`LoadFromHFSpace <unitxt.loaders.LoadFromHFSpace>` - Downloads and loads data from HuggingFace Spaces.
|
| 27 |
|
| 28 |
|
| 29 |
|
metrics.py
CHANGED
|
@@ -18,6 +18,7 @@ from scipy.stats import bootstrap
|
|
| 18 |
from scipy.stats._warnings_errors import DegenerateDataWarning
|
| 19 |
|
| 20 |
from .artifact import Artifact
|
|
|
|
| 21 |
from .dataclass import (
|
| 22 |
AbstractField,
|
| 23 |
InternalField,
|
|
@@ -50,6 +51,12 @@ settings = get_settings()
|
|
| 50 |
warnings.filterwarnings("ignore", category=DegenerateDataWarning)
|
| 51 |
|
| 52 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
def abstract_factory():
|
| 54 |
return {}
|
| 55 |
|
|
|
|
| 18 |
from scipy.stats._warnings_errors import DegenerateDataWarning
|
| 19 |
|
| 20 |
from .artifact import Artifact
|
| 21 |
+
from .collections import ListCollection
|
| 22 |
from .dataclass import (
|
| 23 |
AbstractField,
|
| 24 |
InternalField,
|
|
|
|
| 51 |
warnings.filterwarnings("ignore", category=DegenerateDataWarning)
|
| 52 |
|
| 53 |
|
| 54 |
+
class MetricsList(ListCollection):
|
| 55 |
+
def verify(self):
|
| 56 |
+
for metric in self.items:
|
| 57 |
+
assert isinstance(metric, Metric)
|
| 58 |
+
|
| 59 |
+
|
| 60 |
def abstract_factory():
|
| 61 |
return {}
|
| 62 |
|
operators.py
CHANGED
|
@@ -1617,7 +1617,7 @@ class ApplyMetric(StreamOperator, ArtifactFetcherMixin):
|
|
| 1617 |
calc_confidence_intervals: bool
|
| 1618 |
|
| 1619 |
def process(self, stream: Stream, stream_name: Optional[str] = None) -> Generator:
|
| 1620 |
-
from .metrics import Metric
|
| 1621 |
|
| 1622 |
# Number of instances in input stream is assumed to be small. This is why
|
| 1623 |
# each metric consumes all of them and lays them in its main memory, and even generates
|
|
@@ -1646,18 +1646,25 @@ class ApplyMetric(StreamOperator, ArtifactFetcherMixin):
|
|
| 1646 |
if isinstance(metric_names, str):
|
| 1647 |
metric_names = [metric_names]
|
| 1648 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1649 |
# Each metric operator computes its score and then sets the main score, overwriting
|
| 1650 |
# the previous main score value (if any). So, we need to reverse the order of the listed metrics.
|
| 1651 |
# This will cause the first listed metric to run last, and the main score will be set
|
| 1652 |
# by the first listed metric (as desired).
|
| 1653 |
-
|
| 1654 |
-
|
| 1655 |
-
for metric_name in metric_names:
|
| 1656 |
-
metric = self.get_artifact(metric_name)
|
| 1657 |
-
assert isinstance(
|
| 1658 |
-
metric, Metric
|
| 1659 |
-
), f"Operator {metric_name} must be a Metric"
|
| 1660 |
|
|
|
|
| 1661 |
if not self.calc_confidence_intervals:
|
| 1662 |
metric.disable_confidence_interval_calculation()
|
| 1663 |
multi_stream = MultiStream(
|
|
|
|
| 1617 |
calc_confidence_intervals: bool
|
| 1618 |
|
| 1619 |
def process(self, stream: Stream, stream_name: Optional[str] = None) -> Generator:
|
| 1620 |
+
from .metrics import Metric, MetricsList
|
| 1621 |
|
| 1622 |
# Number of instances in input stream is assumed to be small. This is why
|
| 1623 |
# each metric consumes all of them and lays them in its main memory, and even generates
|
|
|
|
| 1646 |
if isinstance(metric_names, str):
|
| 1647 |
metric_names = [metric_names]
|
| 1648 |
|
| 1649 |
+
metrics_list = []
|
| 1650 |
+
for metric_name in metric_names:
|
| 1651 |
+
metric = self.get_artifact(metric_name)
|
| 1652 |
+
if isinstance(metric, MetricsList):
|
| 1653 |
+
metrics_list.extend(list(metric.items))
|
| 1654 |
+
elif isinstance(metric, Metric):
|
| 1655 |
+
metrics_list.append(metric)
|
| 1656 |
+
else:
|
| 1657 |
+
raise ValueError(
|
| 1658 |
+
f"Operator {metric_name} must be a Metric or MetricsList"
|
| 1659 |
+
)
|
| 1660 |
+
|
| 1661 |
# Each metric operator computes its score and then sets the main score, overwriting
|
| 1662 |
# the previous main score value (if any). So, we need to reverse the order of the listed metrics.
|
| 1663 |
# This will cause the first listed metric to run last, and the main score will be set
|
| 1664 |
# by the first listed metric (as desired).
|
| 1665 |
+
metrics_list = list(reversed(metrics_list))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1666 |
|
| 1667 |
+
for metric in metrics_list:
|
| 1668 |
if not self.calc_confidence_intervals:
|
| 1669 |
metric.disable_confidence_interval_calculation()
|
| 1670 |
multi_stream = MultiStream(
|
settings_utils.py
CHANGED
|
@@ -161,8 +161,8 @@ if Constants.is_uninitilized():
|
|
| 161 |
constants.metric_file = os.path.join(os.path.dirname(__file__), "metric.py")
|
| 162 |
constants.local_catalog_path = os.path.join(os.path.dirname(__file__), "catalog")
|
| 163 |
unitxt_pkg = importlib.util.find_spec("unitxt")
|
| 164 |
-
constants.package_dir = os.path.dirname(unitxt_pkg.origin)
|
| 165 |
if unitxt_pkg and unitxt_pkg.origin:
|
|
|
|
| 166 |
constants.default_catalog_path = os.path.join(constants.package_dir, "catalog")
|
| 167 |
else:
|
| 168 |
constants.default_catalog_path = constants.local_catalog_path
|
|
|
|
| 161 |
constants.metric_file = os.path.join(os.path.dirname(__file__), "metric.py")
|
| 162 |
constants.local_catalog_path = os.path.join(os.path.dirname(__file__), "catalog")
|
| 163 |
unitxt_pkg = importlib.util.find_spec("unitxt")
|
|
|
|
| 164 |
if unitxt_pkg and unitxt_pkg.origin:
|
| 165 |
+
constants.package_dir = os.path.dirname(unitxt_pkg.origin)
|
| 166 |
constants.default_catalog_path = os.path.join(constants.package_dir, "catalog")
|
| 167 |
else:
|
| 168 |
constants.default_catalog_path = constants.local_catalog_path
|
standard.py
CHANGED
|
@@ -1,9 +1,7 @@
|
|
| 1 |
from typing import List, Optional, Union
|
| 2 |
|
| 3 |
from .artifact import fetch_artifact
|
| 4 |
-
from .augmentors import
|
| 5 |
-
Augmentor,
|
| 6 |
-
)
|
| 7 |
from .card import TaskCard
|
| 8 |
from .collections_operators import GetLength
|
| 9 |
from .dataclass import Field, InternalField, NonPositionalField, OptionalField
|
|
@@ -21,6 +19,7 @@ from .stream import MultiStream
|
|
| 21 |
from .system_prompts import EmptySystemPrompt, SystemPrompt
|
| 22 |
from .task import Task
|
| 23 |
from .templates import ApplyRandomTemplate, ApplySingleTemplate, Template, TemplatesList
|
|
|
|
| 24 |
from .utils import LRUCache
|
| 25 |
|
| 26 |
constants = get_constants()
|
|
@@ -305,7 +304,7 @@ class BaseRecipe(Recipe, SourceSequentialOperator):
|
|
| 305 |
|
| 306 |
self.processing.steps.append(self.task)
|
| 307 |
|
| 308 |
-
if self.augmentor is not None:
|
| 309 |
if (
|
| 310 |
self.card.task.augmentable_inputs is None
|
| 311 |
or len(self.task.augmentable_inputs) == 0
|
|
@@ -484,14 +483,12 @@ class StandardRecipe(StandardRecipeWithIndexes):
|
|
| 484 |
sampler (Sampler, optional): The Sampler used to select the demonstrations when num_demos > 0.
|
| 485 |
steps (List[StreamingOperator], optional): List of StreamingOperator objects to be used in the recipe.
|
| 486 |
augmentor (Augmentor) : Augmentor to be used to pseudo randomly augment the source text
|
| 487 |
-
instruction_card_index (int, optional): Index of instruction card to be used
|
| 488 |
-
|
| 489 |
-
template_card_index (int, optional): Index of template card to be used for
|
| 490 |
-
preparing the recipe.
|
| 491 |
|
| 492 |
Methods:
|
| 493 |
prepare(): This overridden method is used for preparing the recipe
|
| 494 |
-
|
| 495 |
|
| 496 |
Raises:
|
| 497 |
AssertionError: If both template and template_card_index are specified at the same time.
|
|
|
|
| 1 |
from typing import List, Optional, Union
|
| 2 |
|
| 3 |
from .artifact import fetch_artifact
|
| 4 |
+
from .augmentors import Augmentor, NullAugmentor
|
|
|
|
|
|
|
| 5 |
from .card import TaskCard
|
| 6 |
from .collections_operators import GetLength
|
| 7 |
from .dataclass import Field, InternalField, NonPositionalField, OptionalField
|
|
|
|
| 19 |
from .system_prompts import EmptySystemPrompt, SystemPrompt
|
| 20 |
from .task import Task
|
| 21 |
from .templates import ApplyRandomTemplate, ApplySingleTemplate, Template, TemplatesList
|
| 22 |
+
from .type_utils import isoftype
|
| 23 |
from .utils import LRUCache
|
| 24 |
|
| 25 |
constants = get_constants()
|
|
|
|
| 304 |
|
| 305 |
self.processing.steps.append(self.task)
|
| 306 |
|
| 307 |
+
if self.augmentor is not None and not isoftype(self.augmentor, NullAugmentor):
|
| 308 |
if (
|
| 309 |
self.card.task.augmentable_inputs is None
|
| 310 |
or len(self.task.augmentable_inputs) == 0
|
|
|
|
| 483 |
sampler (Sampler, optional): The Sampler used to select the demonstrations when num_demos > 0.
|
| 484 |
steps (List[StreamingOperator], optional): List of StreamingOperator objects to be used in the recipe.
|
| 485 |
augmentor (Augmentor) : Augmentor to be used to pseudo randomly augment the source text
|
| 486 |
+
instruction_card_index (int, optional): Index of instruction card to be used for preparing the recipe.
|
| 487 |
+
template_card_index (int, optional): Index of template card to be used for preparing the recipe.
|
|
|
|
|
|
|
| 488 |
|
| 489 |
Methods:
|
| 490 |
prepare(): This overridden method is used for preparing the recipe
|
| 491 |
+
by arranging all the steps, refiners, and renderers in a sequential manner.
|
| 492 |
|
| 493 |
Raises:
|
| 494 |
AssertionError: If both template and template_card_index are specified at the same time.
|
task.py
CHANGED
|
@@ -5,6 +5,7 @@ from typing import Any, Dict, List, Optional, Union
|
|
| 5 |
from .deprecation_utils import deprecation
|
| 6 |
from .error_utils import Documentation, UnitxtError, UnitxtWarning
|
| 7 |
from .logging_utils import get_logger
|
|
|
|
| 8 |
from .operator import InstanceOperator
|
| 9 |
from .operators import ArtifactFetcherMixin
|
| 10 |
from .settings_utils import get_constants
|
|
@@ -186,31 +187,34 @@ class Task(InstanceOperator, ArtifactFetcherMixin):
|
|
| 186 |
|
| 187 |
@classmethod
|
| 188 |
@lru_cache(maxsize=None)
|
| 189 |
-
def
|
| 190 |
metric = cls.get_artifact(metric_id)
|
| 191 |
-
|
|
|
|
|
|
|
| 192 |
|
| 193 |
def check_metrics_type(self) -> None:
|
| 194 |
prediction_type = self.prediction_type
|
| 195 |
for metric_id in self.metrics:
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
|
|
|
| 208 |
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
|
| 215 |
def verify_defaults(self):
|
| 216 |
if self.defaults:
|
|
|
|
| 5 |
from .deprecation_utils import deprecation
|
| 6 |
from .error_utils import Documentation, UnitxtError, UnitxtWarning
|
| 7 |
from .logging_utils import get_logger
|
| 8 |
+
from .metrics import MetricsList
|
| 9 |
from .operator import InstanceOperator
|
| 10 |
from .operators import ArtifactFetcherMixin
|
| 11 |
from .settings_utils import get_constants
|
|
|
|
| 187 |
|
| 188 |
@classmethod
|
| 189 |
@lru_cache(maxsize=None)
|
| 190 |
+
def get_metrics_artifacts(cls, metric_id: str):
|
| 191 |
metric = cls.get_artifact(metric_id)
|
| 192 |
+
if isinstance(metric, MetricsList):
|
| 193 |
+
return metric.items
|
| 194 |
+
return [metric]
|
| 195 |
|
| 196 |
def check_metrics_type(self) -> None:
|
| 197 |
prediction_type = self.prediction_type
|
| 198 |
for metric_id in self.metrics:
|
| 199 |
+
metric_artifacts_list = Task.get_metrics_artifacts(metric_id)
|
| 200 |
+
for metric_artifact in metric_artifacts_list:
|
| 201 |
+
metric_prediction_type = metric_artifact.prediction_type
|
| 202 |
+
if (
|
| 203 |
+
prediction_type == metric_prediction_type
|
| 204 |
+
or prediction_type == Any
|
| 205 |
+
or metric_prediction_type == Any
|
| 206 |
+
or (
|
| 207 |
+
get_origin(metric_prediction_type) is Union
|
| 208 |
+
and prediction_type in get_args(metric_prediction_type)
|
| 209 |
+
)
|
| 210 |
+
):
|
| 211 |
+
continue
|
| 212 |
|
| 213 |
+
raise UnitxtError(
|
| 214 |
+
f"The task's prediction type ({prediction_type}) and '{metric_id}' "
|
| 215 |
+
f"metric's prediction type ({metric_prediction_type}) are different.",
|
| 216 |
+
Documentation.ADDING_TASK,
|
| 217 |
+
)
|
| 218 |
|
| 219 |
def verify_defaults(self):
|
| 220 |
if self.defaults:
|
text_utils.py
CHANGED
|
@@ -137,7 +137,8 @@ def construct_dict_as_yaml_lines(d, indent_delta=2) -> List[str]:
|
|
| 137 |
if len(d) == 0:
|
| 138 |
return ["{}"]
|
| 139 |
for key, val in d.items():
|
| 140 |
-
|
|
|
|
| 141 |
yaml_for_val = construct_dict_as_yaml_lines(val, indent_delta=indent_delta)
|
| 142 |
assert len(yaml_for_val) > 0
|
| 143 |
if is_simple(val):
|
|
|
|
| 137 |
if len(d) == 0:
|
| 138 |
return ["{}"]
|
| 139 |
for key, val in d.items():
|
| 140 |
+
printable_key = f'"{key}"' if (" " in key) or (key == "") else key
|
| 141 |
+
res.append(printable_key + ": ")
|
| 142 |
yaml_for_val = construct_dict_as_yaml_lines(val, indent_delta=indent_delta)
|
| 143 |
assert len(yaml_for_val) > 0
|
| 144 |
if is_simple(val):
|
version.py
CHANGED
|
@@ -1 +1 @@
|
|
| 1 |
-
version = "1.15.
|
|
|
|
| 1 |
+
version = "1.15.7"
|