Upload splitters.py with huggingface_hub
Browse files- splitters.py +57 -12
splitters.py
CHANGED
|
@@ -1,10 +1,11 @@
|
|
| 1 |
import itertools
|
| 2 |
from abc import abstractmethod
|
|
|
|
| 3 |
from typing import Dict, List
|
| 4 |
|
| 5 |
from .artifact import Artifact
|
| 6 |
from .operator import InstanceOperatorWithMultiStreamAccess, MultiStreamOperator
|
| 7 |
-
from .random_utils import
|
| 8 |
from .split_utils import (
|
| 9 |
parse_random_mix_string,
|
| 10 |
parse_slices_string,
|
|
@@ -82,6 +83,7 @@ class SliceSplit(Splitter):
|
|
| 82 |
|
| 83 |
class Sampler(Artifact):
|
| 84 |
sample_size: int = None
|
|
|
|
| 85 |
|
| 86 |
def prepare(self):
|
| 87 |
super().prepare()
|
|
@@ -95,6 +97,11 @@ class Sampler(Artifact):
|
|
| 95 |
size = int(size)
|
| 96 |
self.sample_size = size
|
| 97 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 98 |
@abstractmethod
|
| 99 |
def sample(
|
| 100 |
self, instances_pool: List[Dict[str, object]]
|
|
@@ -107,22 +114,52 @@ class RandomSampler(Sampler):
|
|
| 107 |
self, instances_pool: List[Dict[str, object]]
|
| 108 |
) -> List[Dict[str, object]]:
|
| 109 |
instances_pool = list(instances_pool)
|
| 110 |
-
return
|
| 111 |
|
| 112 |
|
| 113 |
class DiverseLabelsSampler(Sampler):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 114 |
choices: str = "choices"
|
|
|
|
| 115 |
|
| 116 |
def prepare(self):
|
| 117 |
super().prepare()
|
| 118 |
-
self.
|
| 119 |
|
| 120 |
def examplar_repr(self, examplar):
|
| 121 |
if "inputs" not in examplar:
|
| 122 |
raise ValueError(f"'inputs' field is missing from '{examplar}'.")
|
| 123 |
inputs = examplar["inputs"]
|
| 124 |
if self.choices not in inputs:
|
| 125 |
-
raise ValueError(f"{self.choices} field is missing from '{inputs}'.")
|
| 126 |
choices = inputs[self.choices]
|
| 127 |
if not isinstance(choices, list):
|
| 128 |
raise ValueError(
|
|
@@ -131,7 +168,11 @@ class DiverseLabelsSampler(Sampler):
|
|
| 131 |
|
| 132 |
if "outputs" not in examplar:
|
| 133 |
raise ValueError(f"'outputs' field is missing from '{examplar}'.")
|
| 134 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 135 |
if not isinstance(examplar_outputs, list):
|
| 136 |
raise ValueError(
|
| 137 |
f"Unexpected examplar_outputs value '{examplar_outputs}'. Expected a list."
|
|
@@ -151,19 +192,23 @@ class DiverseLabelsSampler(Sampler):
|
|
| 151 |
def sample(
|
| 152 |
self, instances_pool: List[Dict[str, object]]
|
| 153 |
) -> List[Dict[str, object]]:
|
| 154 |
-
if self.
|
| 155 |
-
self.
|
| 156 |
-
all_labels = list(self.
|
| 157 |
-
|
| 158 |
from collections import Counter
|
| 159 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 160 |
total_allocated = 0
|
| 161 |
allocations = Counter()
|
| 162 |
|
| 163 |
while total_allocated < self.sample_size:
|
| 164 |
for label in all_labels:
|
| 165 |
if total_allocated < self.sample_size:
|
| 166 |
-
if len(self.
|
| 167 |
allocations[label] += 1
|
| 168 |
total_allocated += 1
|
| 169 |
else:
|
|
@@ -171,10 +216,10 @@ class DiverseLabelsSampler(Sampler):
|
|
| 171 |
|
| 172 |
result = []
|
| 173 |
for label, allocation in allocations.items():
|
| 174 |
-
sample =
|
| 175 |
result.extend(sample)
|
| 176 |
|
| 177 |
-
|
| 178 |
return result
|
| 179 |
|
| 180 |
|
|
|
|
| 1 |
import itertools
|
| 2 |
from abc import abstractmethod
|
| 3 |
+
from random import Random
|
| 4 |
from typing import Dict, List
|
| 5 |
|
| 6 |
from .artifact import Artifact
|
| 7 |
from .operator import InstanceOperatorWithMultiStreamAccess, MultiStreamOperator
|
| 8 |
+
from .random_utils import new_random_generator
|
| 9 |
from .split_utils import (
|
| 10 |
parse_random_mix_string,
|
| 11 |
parse_slices_string,
|
|
|
|
| 83 |
|
| 84 |
class Sampler(Artifact):
|
| 85 |
sample_size: int = None
|
| 86 |
+
random_generator: Random = new_random_generator(sub_seed="Sampler")
|
| 87 |
|
| 88 |
def prepare(self):
|
| 89 |
super().prepare()
|
|
|
|
| 97 |
size = int(size)
|
| 98 |
self.sample_size = size
|
| 99 |
|
| 100 |
+
def init_new_random_generator(self):
|
| 101 |
+
self.random_generator = new_random_generator(
|
| 102 |
+
sub_seed="init_new_random_generator"
|
| 103 |
+
)
|
| 104 |
+
|
| 105 |
@abstractmethod
|
| 106 |
def sample(
|
| 107 |
self, instances_pool: List[Dict[str, object]]
|
|
|
|
| 114 |
self, instances_pool: List[Dict[str, object]]
|
| 115 |
) -> List[Dict[str, object]]:
|
| 116 |
instances_pool = list(instances_pool)
|
| 117 |
+
return self.random_generator.sample(instances_pool, self.sample_size)
|
| 118 |
|
| 119 |
|
| 120 |
class DiverseLabelsSampler(Sampler):
|
| 121 |
+
"""Selects a balanced sample of instances based on an output field.
|
| 122 |
+
|
| 123 |
+
(used for selecting demonstrations in-context learning)
|
| 124 |
+
|
| 125 |
+
The field must contain list of values e.g ['dog'], ['cat'], ['dog','cat','cow'].
|
| 126 |
+
The balancing is done such that each value or combination of values
|
| 127 |
+
appears as equals as possible in the samples.
|
| 128 |
+
|
| 129 |
+
The `choices` param is required and determines which values should be considered.
|
| 130 |
+
|
| 131 |
+
Example:
|
| 132 |
+
If choices is ['dog,'cat'] , then the following combinations will be considered.
|
| 133 |
+
['']
|
| 134 |
+
['cat']
|
| 135 |
+
['dog']
|
| 136 |
+
['dog','cat']
|
| 137 |
+
|
| 138 |
+
If the instance contains a value not in the 'choice' param, it is ignored. For example,
|
| 139 |
+
if choices is ['dog,'cat'] and the instance field is ['dog','cat','cow'], then 'cow' is ignored
|
| 140 |
+
then the instance is considered as ['dog','cat'].
|
| 141 |
+
|
| 142 |
+
Args:
|
| 143 |
+
sample_size - number of samples to extract
|
| 144 |
+
choices - name of input field that contains the list of values to balance on
|
| 145 |
+
labels - name of output field with labels that must be balanced
|
| 146 |
+
|
| 147 |
+
|
| 148 |
+
"""
|
| 149 |
+
|
| 150 |
choices: str = "choices"
|
| 151 |
+
labels: str = "labels"
|
| 152 |
|
| 153 |
def prepare(self):
|
| 154 |
super().prepare()
|
| 155 |
+
self.labels_cache = None
|
| 156 |
|
| 157 |
def examplar_repr(self, examplar):
|
| 158 |
if "inputs" not in examplar:
|
| 159 |
raise ValueError(f"'inputs' field is missing from '{examplar}'.")
|
| 160 |
inputs = examplar["inputs"]
|
| 161 |
if self.choices not in inputs:
|
| 162 |
+
raise ValueError(f"'{self.choices}' field is missing from '{inputs}'.")
|
| 163 |
choices = inputs[self.choices]
|
| 164 |
if not isinstance(choices, list):
|
| 165 |
raise ValueError(
|
|
|
|
| 168 |
|
| 169 |
if "outputs" not in examplar:
|
| 170 |
raise ValueError(f"'outputs' field is missing from '{examplar}'.")
|
| 171 |
+
outputs = examplar["outputs"]
|
| 172 |
+
if self.labels not in outputs:
|
| 173 |
+
raise ValueError(f"'{self.labels}' field is missing from '{outputs}'.")
|
| 174 |
+
|
| 175 |
+
examplar_outputs = examplar["outputs"][self.labels]
|
| 176 |
if not isinstance(examplar_outputs, list):
|
| 177 |
raise ValueError(
|
| 178 |
f"Unexpected examplar_outputs value '{examplar_outputs}'. Expected a list."
|
|
|
|
| 192 |
def sample(
|
| 193 |
self, instances_pool: List[Dict[str, object]]
|
| 194 |
) -> List[Dict[str, object]]:
|
| 195 |
+
if self.labels_cache is None:
|
| 196 |
+
self.labels_cache = self.divide_by_repr(instances_pool)
|
| 197 |
+
all_labels = list(self.labels_cache.keys())
|
| 198 |
+
self.random_generator.shuffle(all_labels)
|
| 199 |
from collections import Counter
|
| 200 |
|
| 201 |
+
if self.sample_size > len(instances_pool):
|
| 202 |
+
raise ValueError(
|
| 203 |
+
f"Request sample size {self.sample_size} is greater than number of instances {len(instances_pool)}"
|
| 204 |
+
)
|
| 205 |
total_allocated = 0
|
| 206 |
allocations = Counter()
|
| 207 |
|
| 208 |
while total_allocated < self.sample_size:
|
| 209 |
for label in all_labels:
|
| 210 |
if total_allocated < self.sample_size:
|
| 211 |
+
if len(self.labels_cache[label]) - allocations[label] > 0:
|
| 212 |
allocations[label] += 1
|
| 213 |
total_allocated += 1
|
| 214 |
else:
|
|
|
|
| 216 |
|
| 217 |
result = []
|
| 218 |
for label, allocation in allocations.items():
|
| 219 |
+
sample = self.random_generator.sample(self.labels_cache[label], allocation)
|
| 220 |
result.extend(sample)
|
| 221 |
|
| 222 |
+
self.random_generator.shuffle(result)
|
| 223 |
return result
|
| 224 |
|
| 225 |
|