Upload metrics.py with huggingface_hub
Browse files- metrics.py +92 -2
metrics.py
CHANGED
|
@@ -1,6 +1,7 @@
|
|
| 1 |
import uuid
|
| 2 |
from abc import ABC, abstractmethod
|
| 3 |
-
from
|
|
|
|
| 4 |
from typing import Any, Dict, Generator, List, Optional
|
| 5 |
|
| 6 |
import evaluate
|
|
@@ -9,7 +10,6 @@ import numpy
|
|
| 9 |
|
| 10 |
from .operator import (
|
| 11 |
MultiStreamOperator,
|
| 12 |
-
SequntialOperator,
|
| 13 |
SingleStreamOperator,
|
| 14 |
StreamingOperator,
|
| 15 |
StreamInstanceOperator,
|
|
@@ -353,3 +353,93 @@ class Bleu(HuggingfaceMetric):
|
|
| 353 |
metric_name = "bleu"
|
| 354 |
main_score = "bleu"
|
| 355 |
scale = 1.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import uuid
|
| 2 |
from abc import ABC, abstractmethod
|
| 3 |
+
from collections import Counter
|
| 4 |
+
from dataclasses import field
|
| 5 |
from typing import Any, Dict, Generator, List, Optional
|
| 6 |
|
| 7 |
import evaluate
|
|
|
|
| 10 |
|
| 11 |
from .operator import (
|
| 12 |
MultiStreamOperator,
|
|
|
|
| 13 |
SingleStreamOperator,
|
| 14 |
StreamingOperator,
|
| 15 |
StreamInstanceOperator,
|
|
|
|
| 353 |
metric_name = "bleu"
|
| 354 |
main_score = "bleu"
|
| 355 |
scale = 1.0
|
| 356 |
+
|
| 357 |
+
|
| 358 |
+
class CustomF1(GlobalMetric):
|
| 359 |
+
main_score = "f1_micro"
|
| 360 |
+
|
| 361 |
+
@abstractmethod
|
| 362 |
+
def get_element_group(self, element):
|
| 363 |
+
pass
|
| 364 |
+
|
| 365 |
+
@abstractmethod
|
| 366 |
+
def get_element_representation(self, element):
|
| 367 |
+
pass
|
| 368 |
+
|
| 369 |
+
def group_elements(self, l):
|
| 370 |
+
return {
|
| 371 |
+
k: Counter([self.get_element_representation(value) for value in l if self.get_element_group(value) == k])
|
| 372 |
+
for k in set([self.get_element_group(e) for e in l])
|
| 373 |
+
}
|
| 374 |
+
|
| 375 |
+
def calculate_groups_ratio(self, actual_group, total_group):
|
| 376 |
+
return sum([min(actual_group[k], total_group[k]) for k in actual_group.keys()]), sum(actual_group.values())
|
| 377 |
+
|
| 378 |
+
def f1(self, pn, pd, rn, rd):
|
| 379 |
+
precision = 1.0 if pn == 0 and pd == 0 else pn / pd
|
| 380 |
+
recall = 1.0 if rn == 0 and rd == 0 else rn / rd
|
| 381 |
+
try:
|
| 382 |
+
return 2 * precision * recall / (precision + recall)
|
| 383 |
+
except ZeroDivisionError:
|
| 384 |
+
return 0.0
|
| 385 |
+
|
| 386 |
+
def compute(self, references: List[Any], predictions: List[Any]) -> dict:
|
| 387 |
+
# in case reference are List[List[List[Any]]] and predictions are List[List[Any]]:
|
| 388 |
+
if isinstance(references[0], list) and isinstance(references[0][0], list):
|
| 389 |
+
references = [element[0] for element in references]
|
| 390 |
+
|
| 391 |
+
assert len(references) == len(predictions), (
|
| 392 |
+
f"references size ({len(references)})" f" doesn't mach predictions sise ({len(references)})."
|
| 393 |
+
)
|
| 394 |
+
groups_statistics = dict()
|
| 395 |
+
for references_batch, predictions_batch in zip(references, predictions):
|
| 396 |
+
grouped_references = self.group_elements(references_batch)
|
| 397 |
+
grouped_predictions = self.group_elements(predictions_batch)
|
| 398 |
+
all_groups = set(grouped_references.keys()).union(grouped_predictions.keys())
|
| 399 |
+
for group in all_groups:
|
| 400 |
+
if group not in groups_statistics:
|
| 401 |
+
groups_statistics[group] = {
|
| 402 |
+
"precision_numerator": 0,
|
| 403 |
+
"precision_denominator": 0,
|
| 404 |
+
"recall_numerator": 0,
|
| 405 |
+
"recall_denominator": 0,
|
| 406 |
+
}
|
| 407 |
+
references_by_group = grouped_references.get(group, Counter([]))
|
| 408 |
+
predictions_by_group = grouped_predictions.get(group, Counter([]))
|
| 409 |
+
pn, pd = self.calculate_groups_ratio(
|
| 410 |
+
actual_group=predictions_by_group, total_group=references_by_group
|
| 411 |
+
)
|
| 412 |
+
rn, rd = self.calculate_groups_ratio(
|
| 413 |
+
actual_group=references_by_group, total_group=predictions_by_group
|
| 414 |
+
)
|
| 415 |
+
groups_statistics[group]["precision_numerator"] += pn
|
| 416 |
+
groups_statistics[group]["precision_denominator"] += pd
|
| 417 |
+
groups_statistics[group]["recall_numerator"] += rn
|
| 418 |
+
groups_statistics[group]["recall_denominator"] += rd
|
| 419 |
+
|
| 420 |
+
result = {}
|
| 421 |
+
pn_total = pd_total = rn_total = rd_total = 0
|
| 422 |
+
for group in groups_statistics.keys():
|
| 423 |
+
pn, pd, rn, rd = (
|
| 424 |
+
groups_statistics[group]["precision_numerator"],
|
| 425 |
+
groups_statistics[group]["precision_denominator"],
|
| 426 |
+
groups_statistics[group]["recall_numerator"],
|
| 427 |
+
groups_statistics[group]["recall_denominator"],
|
| 428 |
+
)
|
| 429 |
+
result[f"f1_{group}"] = self.f1(pn, pd, rn, rd)
|
| 430 |
+
pn_total, pd_total, rn_total, rd_total = pn_total + pn, pd_total + pd, rn_total + rn, rd_total + rd
|
| 431 |
+
try:
|
| 432 |
+
result["f1_macro"] = sum(result.values()) / len(result.keys())
|
| 433 |
+
except ZeroDivisionError:
|
| 434 |
+
result["f1_macro"] = 1.0
|
| 435 |
+
|
| 436 |
+
result[f"f1_micro"] = self.f1(pn_total, pd_total, rn_total, rd_total)
|
| 437 |
+
return result
|
| 438 |
+
|
| 439 |
+
|
| 440 |
+
class NER(CustomF1):
|
| 441 |
+
def get_element_group(self, element):
|
| 442 |
+
return element[1]
|
| 443 |
+
|
| 444 |
+
def get_element_representation(self, element):
|
| 445 |
+
return str(element)
|