Upload metrics.py with huggingface_hub
Browse files- metrics.py +219 -5
metrics.py
CHANGED
|
@@ -1,9 +1,23 @@
|
|
|
|
|
| 1 |
from abc import ABC, abstractmethod
|
| 2 |
from dataclasses import dataclass, field
|
| 3 |
-
from typing import Any, Dict, List,
|
| 4 |
|
| 5 |
-
|
| 6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
|
| 9 |
def absrtact_factory():
|
|
@@ -21,6 +35,7 @@ class UpdateStream(StreamInstanceOperator):
|
|
| 21 |
instance.update(self.update)
|
| 22 |
return instance
|
| 23 |
|
|
|
|
| 24 |
# TODO: currently we have two classes with this name. metric.Metric and matrics.Metric...
|
| 25 |
class Metric(ABC):
|
| 26 |
@property
|
|
@@ -30,7 +45,7 @@ class Metric(ABC):
|
|
| 30 |
|
| 31 |
|
| 32 |
class GlobalMetric(SingleStreamOperator, Metric):
|
| 33 |
-
def process(self, stream: Stream):
|
| 34 |
references = []
|
| 35 |
predictions = []
|
| 36 |
global_score = {}
|
|
@@ -113,7 +128,7 @@ class InstanceMetric(SingleStreamOperator, Metric):
|
|
| 113 |
yield instance
|
| 114 |
|
| 115 |
def _compute(self, references: List[List[str]], predictions: List[str]) -> dict:
|
| 116 |
-
result = self.compute(references, predictions)
|
| 117 |
result["score"] = result[self.main_score]
|
| 118 |
return result
|
| 119 |
|
|
@@ -122,6 +137,29 @@ class InstanceMetric(SingleStreamOperator, Metric):
|
|
| 122 |
pass
|
| 123 |
|
| 124 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 125 |
class SingleReferenceInstanceMetric(InstanceMetric):
|
| 126 |
def _compute(self, references: List[str], prediction: str) -> dict:
|
| 127 |
result = self.compute(references[0], prediction)
|
|
@@ -139,3 +177,179 @@ class Accuracy(SingleReferenceInstanceMetric):
|
|
| 139 |
|
| 140 |
def compute(self, reference, prediction: str) -> dict:
|
| 141 |
return {"accuracy": float(str(reference) == str(prediction))}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import uuid
|
| 2 |
from abc import ABC, abstractmethod
|
| 3 |
from dataclasses import dataclass, field
|
| 4 |
+
from typing import Any, Dict, Generator, List, Optional
|
| 5 |
|
| 6 |
+
import evaluate
|
| 7 |
+
import nltk
|
| 8 |
+
import numpy
|
| 9 |
+
|
| 10 |
+
from .operator import (
|
| 11 |
+
MultiStreamOperator,
|
| 12 |
+
SequntialOperator,
|
| 13 |
+
SingleStreamOperator,
|
| 14 |
+
StreamingOperator,
|
| 15 |
+
StreamInstanceOperator,
|
| 16 |
+
)
|
| 17 |
+
from .operators import CopyFields
|
| 18 |
+
from .stream import MultiStream, Stream
|
| 19 |
+
|
| 20 |
+
nltk.download("punkt")
|
| 21 |
|
| 22 |
|
| 23 |
def absrtact_factory():
|
|
|
|
| 35 |
instance.update(self.update)
|
| 36 |
return instance
|
| 37 |
|
| 38 |
+
|
| 39 |
# TODO: currently we have two classes with this name. metric.Metric and matrics.Metric...
|
| 40 |
class Metric(ABC):
|
| 41 |
@property
|
|
|
|
| 45 |
|
| 46 |
|
| 47 |
class GlobalMetric(SingleStreamOperator, Metric):
|
| 48 |
+
def process(self, stream: Stream, stream_name: str = None) -> Generator:
|
| 49 |
references = []
|
| 50 |
predictions = []
|
| 51 |
global_score = {}
|
|
|
|
| 128 |
yield instance
|
| 129 |
|
| 130 |
def _compute(self, references: List[List[str]], predictions: List[str]) -> dict:
|
| 131 |
+
result = self.compute(references=references, predictions=predictions)
|
| 132 |
result["score"] = result[self.main_score]
|
| 133 |
return result
|
| 134 |
|
|
|
|
| 137 |
pass
|
| 138 |
|
| 139 |
|
| 140 |
+
class Squad(GlobalMetric):
|
| 141 |
+
_metric = None
|
| 142 |
+
reduction_map = {"mean": ["f1"]}
|
| 143 |
+
main_score = "f1"
|
| 144 |
+
metric = "squad"
|
| 145 |
+
|
| 146 |
+
def prepare(self):
|
| 147 |
+
super(Squad, self).prepare()
|
| 148 |
+
self._metric = evaluate.load(self.metric)
|
| 149 |
+
|
| 150 |
+
def compute(self, references: List[List[str]], predictions: List[str]) -> dict:
|
| 151 |
+
ids = [str(uuid.uuid4()).replace("-", "") for _ in range(len(predictions))]
|
| 152 |
+
formatted_predictions = [
|
| 153 |
+
{"prediction_text": prediction, "id": ids[i]} for i, prediction in enumerate(predictions)
|
| 154 |
+
]
|
| 155 |
+
formatted_references = [
|
| 156 |
+
{"answers": {"answer_start": [-1], "text": reference}, "id": ids[i]}
|
| 157 |
+
for i, reference in enumerate(references)
|
| 158 |
+
]
|
| 159 |
+
|
| 160 |
+
return self._metric.compute(predictions=formatted_predictions, references=formatted_references)
|
| 161 |
+
|
| 162 |
+
|
| 163 |
class SingleReferenceInstanceMetric(InstanceMetric):
|
| 164 |
def _compute(self, references: List[str], prediction: str) -> dict:
|
| 165 |
result = self.compute(references[0], prediction)
|
|
|
|
| 177 |
|
| 178 |
def compute(self, reference, prediction: str) -> dict:
|
| 179 |
return {"accuracy": float(str(reference) == str(prediction))}
|
| 180 |
+
|
| 181 |
+
|
| 182 |
+
class MetricPipeline(MultiStreamOperator, Metric):
|
| 183 |
+
main_score: str = None
|
| 184 |
+
preprocess_steps: Optional[List[StreamingOperator]] = field(default_factory=list)
|
| 185 |
+
postpreprocess_steps: Optional[List[StreamingOperator]] = field(default_factory=list)
|
| 186 |
+
metric: Metric = None
|
| 187 |
+
|
| 188 |
+
def verify(self):
|
| 189 |
+
assert self.main_score is not None, "main_score is not set"
|
| 190 |
+
|
| 191 |
+
def prepare(self):
|
| 192 |
+
super().prepare()
|
| 193 |
+
self.prepare_score = CopyFields(
|
| 194 |
+
field_to_field=[
|
| 195 |
+
[f"score/instance/{self.main_score}", "score/instance/score"],
|
| 196 |
+
[f"score/global/{self.main_score}", "score/global/score"],
|
| 197 |
+
],
|
| 198 |
+
use_query=True,
|
| 199 |
+
)
|
| 200 |
+
|
| 201 |
+
def process(self, multi_stream: MultiStream) -> MultiStream:
|
| 202 |
+
for step in self.preprocess_steps:
|
| 203 |
+
multi_stream = step(multi_stream)
|
| 204 |
+
multi_stream = self.metric(multi_stream)
|
| 205 |
+
for step in self.postpreprocess_steps:
|
| 206 |
+
multi_stream = step(multi_stream)
|
| 207 |
+
multi_stream = self.prepare_score(multi_stream)
|
| 208 |
+
return multi_stream
|
| 209 |
+
|
| 210 |
+
|
| 211 |
+
class HuggingfaceMetric(GlobalMetric):
|
| 212 |
+
metric_name: str = None
|
| 213 |
+
main_score: str = None
|
| 214 |
+
scale: float = 1.0
|
| 215 |
+
|
| 216 |
+
def prepare(self):
|
| 217 |
+
super().prepare()
|
| 218 |
+
self.metric = evaluate.load(self.metric_name)
|
| 219 |
+
|
| 220 |
+
def compute(self, references: List[List[str]], predictions: List[str]) -> dict:
|
| 221 |
+
result = self.metric.compute(predictions=predictions, references=references)
|
| 222 |
+
if self.scale != 1.0:
|
| 223 |
+
for key in result:
|
| 224 |
+
if isinstance(result[key], float):
|
| 225 |
+
result[key] /= self.scale
|
| 226 |
+
return result
|
| 227 |
+
|
| 228 |
+
|
| 229 |
+
class F1(GlobalMetric):
|
| 230 |
+
_metric = None
|
| 231 |
+
main_score = "f1_macro"
|
| 232 |
+
average = None # Report per class then aggregate by mean
|
| 233 |
+
metric = "f1"
|
| 234 |
+
|
| 235 |
+
def prepare(self):
|
| 236 |
+
super(F1, self).prepare()
|
| 237 |
+
self._metric = evaluate.load(self.metric)
|
| 238 |
+
|
| 239 |
+
def get_str_id(self, str):
|
| 240 |
+
if str not in self.str_to_id:
|
| 241 |
+
id = len(self.str_to_id)
|
| 242 |
+
self.str_to_id[str] = id
|
| 243 |
+
self.id_to_str[id] = str
|
| 244 |
+
return self.str_to_id[str]
|
| 245 |
+
|
| 246 |
+
def compute(self, references: List[List[str]], predictions: List[str]) -> dict:
|
| 247 |
+
assert all(
|
| 248 |
+
len(reference) == 1 for reference in references
|
| 249 |
+
), "One single reference per predictition are allowed in F1 metric"
|
| 250 |
+
self.str_to_id = {}
|
| 251 |
+
self.id_to_str = {}
|
| 252 |
+
formatted_references = [self.get_str_id(reference[0]) for reference in references]
|
| 253 |
+
unique_labels = self.str_to_id.keys()
|
| 254 |
+
formatted_predictions = [self.get_str_id(prediction) for prediction in predictions]
|
| 255 |
+
labels = list(set(formatted_references))
|
| 256 |
+
result = self._metric.compute(
|
| 257 |
+
predictions=formatted_predictions, references=formatted_references, labels=labels, average=self.average
|
| 258 |
+
)
|
| 259 |
+
if isinstance(result["f1"], numpy.ndarray):
|
| 260 |
+
from statistics import mean
|
| 261 |
+
|
| 262 |
+
final_result = {self.main_score: mean(result["f1"])}
|
| 263 |
+
for i, label in enumerate(labels):
|
| 264 |
+
final_result["f1_" + self.id_to_str[label]] = result["f1"][i]
|
| 265 |
+
else:
|
| 266 |
+
final_result = {self.main_score: result["f1"]}
|
| 267 |
+
return final_result
|
| 268 |
+
|
| 269 |
+
|
| 270 |
+
class F1Micro(F1):
|
| 271 |
+
main_score = "f1_micro"
|
| 272 |
+
average = "micro"
|
| 273 |
+
|
| 274 |
+
|
| 275 |
+
class F1Macro(F1):
|
| 276 |
+
main_score = "f1_macro"
|
| 277 |
+
|
| 278 |
+
|
| 279 |
+
class F1MultiLabel(GlobalMetric):
|
| 280 |
+
_metric = None
|
| 281 |
+
main_score = "f1_macro"
|
| 282 |
+
average = None # Report per class then aggregate by mean
|
| 283 |
+
seperator = ","
|
| 284 |
+
|
| 285 |
+
def prepare(self):
|
| 286 |
+
super(F1MultiLabel, self).prepare()
|
| 287 |
+
self._metric = evaluate.load("f1", "multilabel")
|
| 288 |
+
|
| 289 |
+
def add_str_to_id(self, str):
|
| 290 |
+
if not str in self.str_to_id:
|
| 291 |
+
id = len(self.str_to_id)
|
| 292 |
+
self.str_to_id[str] = id
|
| 293 |
+
self.id_to_str[id] = str
|
| 294 |
+
return
|
| 295 |
+
|
| 296 |
+
def get_one_hot_vector(self, labels: List[str]):
|
| 297 |
+
result = [0] * len(self.str_to_id)
|
| 298 |
+
for label in labels:
|
| 299 |
+
if label in self.str_to_id:
|
| 300 |
+
result[self.str_to_id[label]] = 1
|
| 301 |
+
return result
|
| 302 |
+
|
| 303 |
+
def compute(self, references: List[List[str]], predictions: List[str]) -> dict:
|
| 304 |
+
self.str_to_id = {}
|
| 305 |
+
self.id_to_str = {}
|
| 306 |
+
labels = list(set([label for reference in references for label in reference]))
|
| 307 |
+
for label in labels:
|
| 308 |
+
assert (
|
| 309 |
+
not self.seperator in label
|
| 310 |
+
), "Reference label (f{label}) can not contain multi label seperator (f{self.seperator}) "
|
| 311 |
+
self.add_str_to_id(label)
|
| 312 |
+
formatted_references = [self.get_one_hot_vector(reference) for reference in references]
|
| 313 |
+
split_predictions = [
|
| 314 |
+
[label.strip() for label in prediction.split(self.seperator)] for prediction in predictions
|
| 315 |
+
]
|
| 316 |
+
formatted_predictions = [self.get_one_hot_vector(prediction) for prediction in split_predictions]
|
| 317 |
+
result = self._metric.compute(
|
| 318 |
+
predictions=formatted_predictions, references=formatted_references, average=self.average
|
| 319 |
+
)
|
| 320 |
+
if isinstance(result["f1"], numpy.ndarray):
|
| 321 |
+
from statistics import mean
|
| 322 |
+
|
| 323 |
+
final_result = {self.main_score: mean(result["f1"])}
|
| 324 |
+
for i, label in enumerate(labels):
|
| 325 |
+
final_result["f1_" + label] = result["f1"][i]
|
| 326 |
+
else:
|
| 327 |
+
final_result = {self.main_score: result["f1"]}
|
| 328 |
+
return final_result
|
| 329 |
+
|
| 330 |
+
|
| 331 |
+
class F1MicroMultiLabel(F1MultiLabel):
|
| 332 |
+
main_score = "f1_micro"
|
| 333 |
+
average = "micro"
|
| 334 |
+
|
| 335 |
+
|
| 336 |
+
class F1MacroMultiLabel(F1MultiLabel):
|
| 337 |
+
main_score = "f1_macro"
|
| 338 |
+
average = None
|
| 339 |
+
|
| 340 |
+
|
| 341 |
+
class Rouge(HuggingfaceMetric):
|
| 342 |
+
metric_name = "rouge"
|
| 343 |
+
main_score = "rougeL"
|
| 344 |
+
scale = 1.0
|
| 345 |
+
|
| 346 |
+
def compute(self, references, predictions):
|
| 347 |
+
predictions = ["\n".join(nltk.sent_tokenize(prediction.strip())) for prediction in predictions]
|
| 348 |
+
references = [["\n".join(nltk.sent_tokenize(r.strip())) for r in reference] for reference in references]
|
| 349 |
+
return super().compute(references, predictions)
|
| 350 |
+
|
| 351 |
+
|
| 352 |
+
class Bleu(HuggingfaceMetric):
|
| 353 |
+
metric_name = "bleu"
|
| 354 |
+
main_score = "bleu"
|
| 355 |
+
scale = 1.0
|