Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import cv2 | |
| import numpy as np | |
| import os | |
| from PIL import Image | |
| import spaces | |
| import torch | |
| import torch.nn.functional as F | |
| from torchvision.transforms import Compose, Normalize | |
| import tempfile | |
| from gradio_imageslider import ImageSlider | |
| import matplotlib.pyplot as plt | |
| from iebins.networks.NewCRFDepth import NewCRFDepth | |
| from iebins.util.transfrom import Resize, NormalizeImage, PrepareForNet | |
| from iebins.utils import post_process_depth, flip_lr | |
| css = """ | |
| #img-display-container { | |
| max-height: 100vh; | |
| } | |
| #img-display-input { | |
| max-height: 80vh; | |
| } | |
| #img-display-output { | |
| max-height: 80vh; | |
| } | |
| """ | |
| DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu' | |
| model = NewCRFDepth(version='large07', inv_depth=False, | |
| max_depth=10, pretrained=None).to(DEVICE).eval() | |
| model.train() | |
| num_params = sum([np.prod(p.size()) for p in model.parameters()]) | |
| print("== Total number of parameters: {}".format(num_params)) | |
| num_params_update = sum([np.prod(p.shape) | |
| for p in model.parameters() if p.requires_grad]) | |
| print("== Total number of learning parameters: {}".format(num_params_update)) | |
| model = torch.nn.DataParallel(model) | |
| checkpoint = torch.load('checkpoints/nyu_L.pth', | |
| map_location=torch.device(DEVICE)) | |
| model.load_state_dict(checkpoint['model']) | |
| print("== Loaded checkpoint '{}'".format('checkpoints/nyu_L.pth')) | |
| title = "# IEBins: Iterative Elastic Bins for Monocular Depth Estimation" | |
| description = """Demo for **IEBins: Iterative Elastic Bins for Monocular Depth Estimation**. | |
| Please refer to the [paper](https://arxiv.org/abs/2309.14137), [github](https://github.com/ShuweiShao/IEBins), or [poster](https://nips.cc/media/PosterPDFs/NeurIPS%202023/70695.png?t=1701662442.5228624) for more details.""" | |
| transform = Compose([ | |
| Resize( | |
| width=518, | |
| height=518, | |
| resize_target=False, | |
| keep_aspect_ratio=True, | |
| ensure_multiple_of=14, | |
| resize_method='lower_bound', | |
| image_interpolation_method=cv2.INTER_CUBIC, | |
| ), | |
| NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), | |
| PrepareForNet(), | |
| ]) | |
| def predict_depth(model, image): | |
| return model(image) | |
| with gr.Blocks(css=css) as demo: | |
| gr.Markdown(title) | |
| gr.Markdown(description) | |
| with gr.Row(): | |
| input_image = gr.Image(label="Input Image", | |
| type='numpy', elem_id='img-display-input') | |
| depth_image_slider = ImageSlider( | |
| label="Depth Map with Slider View", elem_id='img-display-output', position=0.5,) | |
| raw_file = gr.File( | |
| label="16-bit raw depth (can be considered as disparity)") | |
| submit = gr.Button("Submit") | |
| def on_submit(image): | |
| original_image = image.copy() | |
| # This is for resizing the image to 518x518 | |
| h, w = image.shape[:2] | |
| image = np.asarray(image, dtype=np.float32) / 255.0 | |
| image = torch.from_numpy(image.transpose((2, 0, 1))) | |
| image = Normalize(mean=[0.485, 0.456, 0.406], std=[ | |
| 0.229, 0.224, 0.225])(image) | |
| with torch.no_grad(): | |
| image = torch.autograd.Variable(image.unsqueeze(0)) | |
| print("== Processing image") | |
| pred_depths_r_list, _, _ = model(image) | |
| image_flipped = flip_lr(image) | |
| pred_depths_r_list_flipped, _, _ = model(image_flipped) | |
| pred_depth = post_process_depth( | |
| pred_depths_r_list[-1], pred_depths_r_list_flipped[-1]) | |
| print("== Finished processing image") | |
| # Convert the PyTorch tensor to a NumPy array and squeeze | |
| pred_depth = pred_depth.cpu().numpy().squeeze() | |
| # Continue with your file saving operations | |
| tmp = tempfile.NamedTemporaryFile(suffix='.png', delete=False) | |
| # cv2.imwrite(tmp.name, output_image) | |
| plt.imsave(tmp.name, pred_depth, cmap='jet') | |
| return [(original_image, tmp.name), tmp.name] | |
| submit.click(on_submit, inputs=[input_image], outputs=[ | |
| depth_image_slider, raw_file]) | |
| example_files = os.listdir('examples') | |
| example_files.sort() | |
| example_files = [os.path.join('examples', filename) | |
| for filename in example_files] | |
| examples = gr.Examples(examples=example_files, inputs=[input_image], outputs=[ | |
| depth_image_slider, raw_file], fn=on_submit, cache_examples=False) | |
| if __name__ == '__main__': | |
| demo.queue().launch() | |