Spaces:
Sleeping
Sleeping
Commit
·
6bf4d42
1
Parent(s):
80a7fd8
added unet files
Browse files- .gitignore +2 -0
- app.py +0 -8
- predict_unet.py +3 -10
- unet/unet.py +60 -0
- unet/unet_3plus.py +440 -0
.gitignore
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
__pycache__
|
| 2 |
+
unet/__pycache__
|
app.py
CHANGED
|
@@ -8,14 +8,6 @@ from PIL import Image
|
|
| 8 |
from predict_unet import predict_model
|
| 9 |
|
| 10 |
|
| 11 |
-
# device = torch.device(
|
| 12 |
-
# "cuda"
|
| 13 |
-
# if torch.cuda.is_available()
|
| 14 |
-
# else "mps"
|
| 15 |
-
# if torch.backends.mps.is_available()
|
| 16 |
-
# else "cpu"
|
| 17 |
-
# )
|
| 18 |
-
|
| 19 |
title = "<center><strong><font size='8'> Medical Image Segmentation with UNet </font></strong></center>"
|
| 20 |
|
| 21 |
examples = [["examples/50494616.jpg"], ["examples/50494676.jpg"], ["examples/56399783.jpg"],
|
|
|
|
| 8 |
from predict_unet import predict_model
|
| 9 |
|
| 10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
title = "<center><strong><font size='8'> Medical Image Segmentation with UNet </font></strong></center>"
|
| 12 |
|
| 13 |
examples = [["examples/50494616.jpg"], ["examples/50494676.jpg"], ["examples/56399783.jpg"],
|
predict_unet.py
CHANGED
|
@@ -1,21 +1,14 @@
|
|
| 1 |
|
| 2 |
import os
|
| 3 |
import numpy as np
|
| 4 |
-
import skimage.io as skio
|
| 5 |
import skimage.transform as trans
|
| 6 |
from skimage.color import rgb2gray
|
| 7 |
-
from
|
| 8 |
-
import
|
| 9 |
-
|
| 10 |
-
sys.path.append("/panfs/jay/groups/29/umii/mo000007/zooniverse/UNet")
|
| 11 |
-
|
| 12 |
-
from utils import *
|
| 13 |
-
from unet import unet
|
| 14 |
-
from unet_3plus import UNet_3Plus, UNet_3Plus_DeepSup, UNet_3Plus_DeepSup_CGM
|
| 15 |
|
| 16 |
|
| 17 |
def predict_model(input, unet_type):
|
| 18 |
-
model_path = "/
|
| 19 |
h, w = 256, 256
|
| 20 |
input_shape = [h, w, 1]
|
| 21 |
output_channels = 1
|
|
|
|
| 1 |
|
| 2 |
import os
|
| 3 |
import numpy as np
|
|
|
|
| 4 |
import skimage.transform as trans
|
| 5 |
from skimage.color import rgb2gray
|
| 6 |
+
from unet.unet import unet
|
| 7 |
+
from unet.unet_3plus import UNet_3Plus, UNet_3Plus_DeepSup, UNet_3Plus_DeepSup_CGM
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
|
| 9 |
|
| 10 |
def predict_model(input, unet_type):
|
| 11 |
+
model_path = "unet/trained_models"
|
| 12 |
h, w = 256, 256
|
| 13 |
input_shape = [h, w, 1]
|
| 14 |
output_channels = 1
|
unet/unet.py
ADDED
|
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Build U-Net model
|
| 2 |
+
import tensorflow as tf
|
| 3 |
+
import tensorflow.keras.layers as layers
|
| 4 |
+
import tensorflow.keras.models as models
|
| 5 |
+
import tensorflow.keras.metrics as metrics
|
| 6 |
+
#from keras import backend as keras
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
def unet(pretrained_weights = None, input_size = (256,256,1)):
|
| 10 |
+
inputs = layers.Input(input_size)
|
| 11 |
+
conv1 = layers.Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(inputs)
|
| 12 |
+
conv1 = layers.Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv1)
|
| 13 |
+
pool1 = layers.MaxPooling2D(pool_size=(2, 2))(conv1)
|
| 14 |
+
|
| 15 |
+
conv2 = layers.Conv2D(128, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(pool1)
|
| 16 |
+
conv2 = layers.Conv2D(128, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv2)
|
| 17 |
+
pool2 = layers.MaxPooling2D(pool_size=(2, 2))(conv2)
|
| 18 |
+
|
| 19 |
+
conv3 = layers.Conv2D(256, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(pool2)
|
| 20 |
+
conv3 = layers.Conv2D(256, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv3)
|
| 21 |
+
pool3 = layers.MaxPooling2D(pool_size=(2, 2))(conv3)
|
| 22 |
+
|
| 23 |
+
conv4 = layers.Conv2D(512, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(pool3)
|
| 24 |
+
conv4 = layers.Conv2D(512, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv4)
|
| 25 |
+
drop4 = layers.Dropout(0.5)(conv4)
|
| 26 |
+
pool4 = layers.MaxPooling2D(pool_size=(2, 2))(drop4)
|
| 27 |
+
|
| 28 |
+
conv5 = layers.Conv2D(1024, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(pool4)
|
| 29 |
+
conv5 = layers.Conv2D(1024, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv5)
|
| 30 |
+
drop5 = layers.Dropout(0.5)(conv5)
|
| 31 |
+
|
| 32 |
+
up6 = layers.Conv2D(512, 2, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(layers.UpSampling2D(size = (2,2))(drop5))
|
| 33 |
+
merge6 = layers.concatenate([drop4,up6], axis = 3)
|
| 34 |
+
conv6 = layers.Conv2D(512, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(merge6)
|
| 35 |
+
conv6 = layers.Conv2D(512, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv6)
|
| 36 |
+
|
| 37 |
+
up7 = layers.Conv2D(256, 2, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(layers.UpSampling2D(size = (2,2))(conv6))
|
| 38 |
+
merge7 = layers.concatenate([conv3,up7], axis = 3)
|
| 39 |
+
conv7 = layers.Conv2D(256, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(merge7)
|
| 40 |
+
conv7 = layers.Conv2D(256, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv7)
|
| 41 |
+
|
| 42 |
+
up8 = layers.Conv2D(128, 2, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(layers.UpSampling2D(size = (2,2))(conv7))
|
| 43 |
+
merge8 = layers.concatenate([conv2,up8], axis = 3)
|
| 44 |
+
conv8 = layers.Conv2D(128, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(merge8)
|
| 45 |
+
conv8 = layers.Conv2D(128, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv8)
|
| 46 |
+
|
| 47 |
+
up9 = layers.Conv2D(64, 2, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(layers.UpSampling2D(size = (2,2))(conv8))
|
| 48 |
+
merge9 = layers.concatenate([conv1,up9], axis = 3)
|
| 49 |
+
conv9 = layers.Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(merge9)
|
| 50 |
+
conv9 = layers.Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv9)
|
| 51 |
+
conv9 = layers.Conv2D(2, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv9)
|
| 52 |
+
|
| 53 |
+
conv10 = layers.Conv2D(1, 1, activation = 'sigmoid')(conv9)
|
| 54 |
+
|
| 55 |
+
model = models.Model(inputs=inputs, outputs=conv10)
|
| 56 |
+
|
| 57 |
+
if(pretrained_weights):
|
| 58 |
+
model.load_weights(pretrained_weights)
|
| 59 |
+
|
| 60 |
+
return model
|
unet/unet_3plus.py
ADDED
|
@@ -0,0 +1,440 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import tensorflow as tf
|
| 2 |
+
import tensorflow.keras as k
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
# Model Architecture
|
| 6 |
+
def conv_block(x, kernels, kernel_size=(3, 3), strides=(1, 1), padding='same',
|
| 7 |
+
is_bn=True, is_relu=True, n=2):
|
| 8 |
+
""" Custom function for conv2d:
|
| 9 |
+
Apply 3*3 convolutions with BN and relu.
|
| 10 |
+
"""
|
| 11 |
+
for i in range(1, n + 1):
|
| 12 |
+
x = k.layers.Conv2D(filters=kernels, kernel_size=kernel_size,
|
| 13 |
+
padding=padding, strides=strides,
|
| 14 |
+
kernel_regularizer=tf.keras.regularizers.l2(1e-4),
|
| 15 |
+
kernel_initializer=k.initializers.he_normal(seed=5))(x)
|
| 16 |
+
if is_bn:
|
| 17 |
+
x = k.layers.BatchNormalization()(x)
|
| 18 |
+
if is_relu:
|
| 19 |
+
x = k.activations.relu(x)
|
| 20 |
+
|
| 21 |
+
return x
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
def dotProduct(seg, cls):
|
| 25 |
+
B, H, W, N = k.backend.int_shape(seg)
|
| 26 |
+
seg = tf.reshape(seg, [-1, H * W, N])
|
| 27 |
+
final = tf.einsum("ijk,ik->ijk", seg, cls)
|
| 28 |
+
final = tf.reshape(final, [-1, H, W, N])
|
| 29 |
+
return final
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
""" UNet_3Plus """
|
| 33 |
+
def UNet_3Plus(INPUT_SHAPE, OUTPUT_CHANNELS, pretrained_weights = None):
|
| 34 |
+
filters = [64, 128, 256, 512, 1024]
|
| 35 |
+
|
| 36 |
+
input_layer = k.layers.Input(shape=INPUT_SHAPE, name="input_layer") # 320*320*3
|
| 37 |
+
|
| 38 |
+
""" Encoder"""
|
| 39 |
+
# block 1
|
| 40 |
+
e1 = conv_block(input_layer, filters[0]) # 320*320*64
|
| 41 |
+
|
| 42 |
+
# block 2
|
| 43 |
+
e2 = k.layers.MaxPool2D(pool_size=(2, 2))(e1) # 160*160*64
|
| 44 |
+
e2 = conv_block(e2, filters[1]) # 160*160*128
|
| 45 |
+
|
| 46 |
+
# block 3
|
| 47 |
+
e3 = k.layers.MaxPool2D(pool_size=(2, 2))(e2) # 80*80*128
|
| 48 |
+
e3 = conv_block(e3, filters[2]) # 80*80*256
|
| 49 |
+
|
| 50 |
+
# block 4
|
| 51 |
+
e4 = k.layers.MaxPool2D(pool_size=(2, 2))(e3) # 40*40*256
|
| 52 |
+
e4 = conv_block(e4, filters[3]) # 40*40*512
|
| 53 |
+
|
| 54 |
+
# block 5
|
| 55 |
+
# bottleneck layer
|
| 56 |
+
e5 = k.layers.MaxPool2D(pool_size=(2, 2))(e4) # 20*20*512
|
| 57 |
+
e5 = conv_block(e5, filters[4]) # 20*20*1024
|
| 58 |
+
|
| 59 |
+
""" Decoder """
|
| 60 |
+
cat_channels = filters[0]
|
| 61 |
+
cat_blocks = len(filters)
|
| 62 |
+
upsample_channels = cat_blocks * cat_channels
|
| 63 |
+
|
| 64 |
+
""" d4 """
|
| 65 |
+
e1_d4 = k.layers.MaxPool2D(pool_size=(8, 8))(e1) # 320*320*64 --> 40*40*64
|
| 66 |
+
e1_d4 = conv_block(e1_d4, cat_channels, n=1) # 320*320*64 --> 40*40*64
|
| 67 |
+
|
| 68 |
+
e2_d4 = k.layers.MaxPool2D(pool_size=(4, 4))(e2) # 160*160*128 --> 40*40*128
|
| 69 |
+
e2_d4 = conv_block(e2_d4, cat_channels, n=1) # 160*160*128 --> 40*40*64
|
| 70 |
+
|
| 71 |
+
e3_d4 = k.layers.MaxPool2D(pool_size=(2, 2))(e3) # 80*80*256 --> 40*40*256
|
| 72 |
+
e3_d4 = conv_block(e3_d4, cat_channels, n=1) # 80*80*256 --> 40*40*64
|
| 73 |
+
|
| 74 |
+
e4_d4 = conv_block(e4, cat_channels, n=1) # 40*40*512 --> 40*40*64
|
| 75 |
+
|
| 76 |
+
e5_d4 = k.layers.UpSampling2D(size=(2, 2), interpolation='bilinear')(e5) # 80*80*256 --> 40*40*256
|
| 77 |
+
e5_d4 = conv_block(e5_d4, cat_channels, n=1) # 20*20*1024 --> 20*20*64
|
| 78 |
+
|
| 79 |
+
d4 = k.layers.concatenate([e1_d4, e2_d4, e3_d4, e4_d4, e5_d4])
|
| 80 |
+
d4 = conv_block(d4, upsample_channels, n=1) # 40*40*320 --> 40*40*320
|
| 81 |
+
|
| 82 |
+
""" d3 """
|
| 83 |
+
e1_d3 = k.layers.MaxPool2D(pool_size=(4, 4))(e1) # 320*320*64 --> 80*80*64
|
| 84 |
+
e1_d3 = conv_block(e1_d3, cat_channels, n=1) # 80*80*64 --> 80*80*64
|
| 85 |
+
|
| 86 |
+
e2_d3 = k.layers.MaxPool2D(pool_size=(2, 2))(e2) # 160*160*256 --> 80*80*256
|
| 87 |
+
e2_d3 = conv_block(e2_d3, cat_channels, n=1) # 80*80*256 --> 80*80*64
|
| 88 |
+
|
| 89 |
+
e3_d3 = conv_block(e3, cat_channels, n=1) # 80*80*512 --> 80*80*64
|
| 90 |
+
|
| 91 |
+
e4_d3 = k.layers.UpSampling2D(size=(2, 2), interpolation='bilinear')(d4) # 40*40*320 --> 80*80*320
|
| 92 |
+
e4_d3 = conv_block(e4_d3, cat_channels, n=1) # 80*80*320 --> 80*80*64
|
| 93 |
+
|
| 94 |
+
e5_d3 = k.layers.UpSampling2D(size=(4, 4), interpolation='bilinear')(e5) # 20*20*320 --> 80*80*320
|
| 95 |
+
e5_d3 = conv_block(e5_d3, cat_channels, n=1) # 80*80*320 --> 80*80*64
|
| 96 |
+
|
| 97 |
+
d3 = k.layers.concatenate([e1_d3, e2_d3, e3_d3, e4_d3, e5_d3])
|
| 98 |
+
d3 = conv_block(d3, upsample_channels, n=1) # 80*80*320 --> 80*80*320
|
| 99 |
+
|
| 100 |
+
""" d2 """
|
| 101 |
+
e1_d2 = k.layers.MaxPool2D(pool_size=(2, 2))(e1) # 320*320*64 --> 160*160*64
|
| 102 |
+
e1_d2 = conv_block(e1_d2, cat_channels, n=1) # 160*160*64 --> 160*160*64
|
| 103 |
+
|
| 104 |
+
e2_d2 = conv_block(e2, cat_channels, n=1) # 160*160*256 --> 160*160*64
|
| 105 |
+
|
| 106 |
+
d3_d2 = k.layers.UpSampling2D(size=(2, 2), interpolation='bilinear')(d3) # 80*80*320 --> 160*160*320
|
| 107 |
+
d3_d2 = conv_block(d3_d2, cat_channels, n=1) # 160*160*320 --> 160*160*64
|
| 108 |
+
|
| 109 |
+
d4_d2 = k.layers.UpSampling2D(size=(4, 4), interpolation='bilinear')(d4) # 40*40*320 --> 160*160*320
|
| 110 |
+
d4_d2 = conv_block(d4_d2, cat_channels, n=1) # 160*160*320 --> 160*160*64
|
| 111 |
+
|
| 112 |
+
e5_d2 = k.layers.UpSampling2D(size=(8, 8), interpolation='bilinear')(e5) # 20*20*320 --> 160*160*320
|
| 113 |
+
e5_d2 = conv_block(e5_d2, cat_channels, n=1) # 160*160*320 --> 160*160*64
|
| 114 |
+
|
| 115 |
+
d2 = k.layers.concatenate([e1_d2, e2_d2, d3_d2, d4_d2, e5_d2])
|
| 116 |
+
d2 = conv_block(d2, upsample_channels, n=1) # 160*160*320 --> 160*160*320
|
| 117 |
+
|
| 118 |
+
""" d1 """
|
| 119 |
+
e1_d1 = conv_block(e1, cat_channels, n=1) # 320*320*64 --> 320*320*64
|
| 120 |
+
|
| 121 |
+
d2_d1 = k.layers.UpSampling2D(size=(2, 2), interpolation='bilinear')(d2) # 160*160*320 --> 320*320*320
|
| 122 |
+
d2_d1 = conv_block(d2_d1, cat_channels, n=1) # 160*160*320 --> 160*160*64
|
| 123 |
+
|
| 124 |
+
d3_d1 = k.layers.UpSampling2D(size=(4, 4), interpolation='bilinear')(d3) # 80*80*320 --> 320*320*320
|
| 125 |
+
d3_d1 = conv_block(d3_d1, cat_channels, n=1) # 320*320*320 --> 320*320*64
|
| 126 |
+
|
| 127 |
+
d4_d1 = k.layers.UpSampling2D(size=(8, 8), interpolation='bilinear')(d4) # 40*40*320 --> 320*320*320
|
| 128 |
+
d4_d1 = conv_block(d4_d1, cat_channels, n=1) # 320*320*320 --> 320*320*64
|
| 129 |
+
|
| 130 |
+
e5_d1 = k.layers.UpSampling2D(size=(16, 16), interpolation='bilinear')(e5) # 20*20*320 --> 320*320*320
|
| 131 |
+
e5_d1 = conv_block(e5_d1, cat_channels, n=1) # 320*320*320 --> 320*320*64
|
| 132 |
+
|
| 133 |
+
d1 = k.layers.concatenate([e1_d1, d2_d1, d3_d1, d4_d1, e5_d1, ])
|
| 134 |
+
d1 = conv_block(d1, upsample_channels, n=1) # 320*320*320 --> 320*320*320
|
| 135 |
+
|
| 136 |
+
# last layer does not have batchnorm and relu
|
| 137 |
+
d = conv_block(d1, OUTPUT_CHANNELS, n=1, is_bn=False, is_relu=False)
|
| 138 |
+
|
| 139 |
+
if OUTPUT_CHANNELS == 1:
|
| 140 |
+
output = k.activations.sigmoid(d)
|
| 141 |
+
else:
|
| 142 |
+
output = k.activations.softmax(d)
|
| 143 |
+
|
| 144 |
+
model = tf.keras.Model(inputs=input_layer, outputs=output, name='UNet_3Plus')
|
| 145 |
+
if(pretrained_weights):
|
| 146 |
+
model.load_weights(pretrained_weights)
|
| 147 |
+
|
| 148 |
+
return model
|
| 149 |
+
|
| 150 |
+
|
| 151 |
+
""" UNet_3Plus with Deep Supervison"""
|
| 152 |
+
def UNet_3Plus_DeepSup(INPUT_SHAPE, OUTPUT_CHANNELS, pretrained_weights = None):
|
| 153 |
+
filters = [64, 128, 256, 512, 1024]
|
| 154 |
+
|
| 155 |
+
input_layer = k.layers.Input(shape=INPUT_SHAPE, name="input_layer") # 320*320*3
|
| 156 |
+
|
| 157 |
+
""" Encoder"""
|
| 158 |
+
# block 1
|
| 159 |
+
e1 = conv_block(input_layer, filters[0]) # 320*320*64
|
| 160 |
+
|
| 161 |
+
# block 2
|
| 162 |
+
e2 = k.layers.MaxPool2D(pool_size=(2, 2))(e1) # 160*160*64
|
| 163 |
+
e2 = conv_block(e2, filters[1]) # 160*160*128
|
| 164 |
+
|
| 165 |
+
# block 3
|
| 166 |
+
e3 = k.layers.MaxPool2D(pool_size=(2, 2))(e2) # 80*80*128
|
| 167 |
+
e3 = conv_block(e3, filters[2]) # 80*80*256
|
| 168 |
+
|
| 169 |
+
# block 4
|
| 170 |
+
e4 = k.layers.MaxPool2D(pool_size=(2, 2))(e3) # 40*40*256
|
| 171 |
+
e4 = conv_block(e4, filters[3]) # 40*40*512
|
| 172 |
+
|
| 173 |
+
# block 5
|
| 174 |
+
# bottleneck layer
|
| 175 |
+
e5 = k.layers.MaxPool2D(pool_size=(2, 2))(e4) # 20*20*512
|
| 176 |
+
e5 = conv_block(e5, filters[4]) # 20*20*1024
|
| 177 |
+
|
| 178 |
+
""" Decoder """
|
| 179 |
+
cat_channels = filters[0]
|
| 180 |
+
cat_blocks = len(filters)
|
| 181 |
+
upsample_channels = cat_blocks * cat_channels
|
| 182 |
+
|
| 183 |
+
""" d4 """
|
| 184 |
+
e1_d4 = k.layers.MaxPool2D(pool_size=(8, 8))(e1) # 320*320*64 --> 40*40*64
|
| 185 |
+
e1_d4 = conv_block(e1_d4, cat_channels, n=1) # 320*320*64 --> 40*40*64
|
| 186 |
+
|
| 187 |
+
e2_d4 = k.layers.MaxPool2D(pool_size=(4, 4))(e2) # 160*160*128 --> 40*40*128
|
| 188 |
+
e2_d4 = conv_block(e2_d4, cat_channels, n=1) # 160*160*128 --> 40*40*64
|
| 189 |
+
|
| 190 |
+
e3_d4 = k.layers.MaxPool2D(pool_size=(2, 2))(e3) # 80*80*256 --> 40*40*256
|
| 191 |
+
e3_d4 = conv_block(e3_d4, cat_channels, n=1) # 80*80*256 --> 40*40*64
|
| 192 |
+
|
| 193 |
+
e4_d4 = conv_block(e4, cat_channels, n=1) # 40*40*512 --> 40*40*64
|
| 194 |
+
|
| 195 |
+
e5_d4 = k.layers.UpSampling2D(size=(2, 2), interpolation='bilinear')(e5) # 80*80*256 --> 40*40*256
|
| 196 |
+
e5_d4 = conv_block(e5_d4, cat_channels, n=1) # 20*20*1024 --> 20*20*64
|
| 197 |
+
|
| 198 |
+
d4 = k.layers.concatenate([e1_d4, e2_d4, e3_d4, e4_d4, e5_d4])
|
| 199 |
+
d4 = conv_block(d4, upsample_channels, n=1) # 40*40*320 --> 40*40*320
|
| 200 |
+
|
| 201 |
+
""" d3 """
|
| 202 |
+
e1_d3 = k.layers.MaxPool2D(pool_size=(4, 4))(e1) # 320*320*64 --> 80*80*64
|
| 203 |
+
e1_d3 = conv_block(e1_d3, cat_channels, n=1) # 80*80*64 --> 80*80*64
|
| 204 |
+
|
| 205 |
+
e2_d3 = k.layers.MaxPool2D(pool_size=(2, 2))(e2) # 160*160*256 --> 80*80*256
|
| 206 |
+
e2_d3 = conv_block(e2_d3, cat_channels, n=1) # 80*80*256 --> 80*80*64
|
| 207 |
+
|
| 208 |
+
e3_d3 = conv_block(e3, cat_channels, n=1) # 80*80*512 --> 80*80*64
|
| 209 |
+
|
| 210 |
+
e4_d3 = k.layers.UpSampling2D(size=(2, 2), interpolation='bilinear')(d4) # 40*40*320 --> 80*80*320
|
| 211 |
+
e4_d3 = conv_block(e4_d3, cat_channels, n=1) # 80*80*320 --> 80*80*64
|
| 212 |
+
|
| 213 |
+
e5_d3 = k.layers.UpSampling2D(size=(4, 4), interpolation='bilinear')(e5) # 20*20*320 --> 80*80*320
|
| 214 |
+
e5_d3 = conv_block(e5_d3, cat_channels, n=1) # 80*80*320 --> 80*80*64
|
| 215 |
+
|
| 216 |
+
d3 = k.layers.concatenate([e1_d3, e2_d3, e3_d3, e4_d3, e5_d3])
|
| 217 |
+
d3 = conv_block(d3, upsample_channels, n=1) # 80*80*320 --> 80*80*320
|
| 218 |
+
|
| 219 |
+
""" d2 """
|
| 220 |
+
e1_d2 = k.layers.MaxPool2D(pool_size=(2, 2))(e1) # 320*320*64 --> 160*160*64
|
| 221 |
+
e1_d2 = conv_block(e1_d2, cat_channels, n=1) # 160*160*64 --> 160*160*64
|
| 222 |
+
|
| 223 |
+
e2_d2 = conv_block(e2, cat_channels, n=1) # 160*160*256 --> 160*160*64
|
| 224 |
+
|
| 225 |
+
d3_d2 = k.layers.UpSampling2D(size=(2, 2), interpolation='bilinear')(d3) # 80*80*320 --> 160*160*320
|
| 226 |
+
d3_d2 = conv_block(d3_d2, cat_channels, n=1) # 160*160*320 --> 160*160*64
|
| 227 |
+
|
| 228 |
+
d4_d2 = k.layers.UpSampling2D(size=(4, 4), interpolation='bilinear')(d4) # 40*40*320 --> 160*160*320
|
| 229 |
+
d4_d2 = conv_block(d4_d2, cat_channels, n=1) # 160*160*320 --> 160*160*64
|
| 230 |
+
|
| 231 |
+
e5_d2 = k.layers.UpSampling2D(size=(8, 8), interpolation='bilinear')(e5) # 20*20*320 --> 160*160*320
|
| 232 |
+
e5_d2 = conv_block(e5_d2, cat_channels, n=1) # 160*160*320 --> 160*160*64
|
| 233 |
+
|
| 234 |
+
d2 = k.layers.concatenate([e1_d2, e2_d2, d3_d2, d4_d2, e5_d2])
|
| 235 |
+
d2 = conv_block(d2, upsample_channels, n=1) # 160*160*320 --> 160*160*320
|
| 236 |
+
|
| 237 |
+
""" d1 """
|
| 238 |
+
e1_d1 = conv_block(e1, cat_channels, n=1) # 320*320*64 --> 320*320*64
|
| 239 |
+
|
| 240 |
+
d2_d1 = k.layers.UpSampling2D(size=(2, 2), interpolation='bilinear')(d2) # 160*160*320 --> 320*320*320
|
| 241 |
+
d2_d1 = conv_block(d2_d1, cat_channels, n=1) # 160*160*320 --> 160*160*64
|
| 242 |
+
|
| 243 |
+
d3_d1 = k.layers.UpSampling2D(size=(4, 4), interpolation='bilinear')(d3) # 80*80*320 --> 320*320*320
|
| 244 |
+
d3_d1 = conv_block(d3_d1, cat_channels, n=1) # 320*320*320 --> 320*320*64
|
| 245 |
+
|
| 246 |
+
d4_d1 = k.layers.UpSampling2D(size=(8, 8), interpolation='bilinear')(d4) # 40*40*320 --> 320*320*320
|
| 247 |
+
d4_d1 = conv_block(d4_d1, cat_channels, n=1) # 320*320*320 --> 320*320*64
|
| 248 |
+
|
| 249 |
+
e5_d1 = k.layers.UpSampling2D(size=(16, 16), interpolation='bilinear')(e5) # 20*20*320 --> 320*320*320
|
| 250 |
+
e5_d1 = conv_block(e5_d1, cat_channels, n=1) # 320*320*320 --> 320*320*64
|
| 251 |
+
|
| 252 |
+
d1 = k.layers.concatenate([e1_d1, d2_d1, d3_d1, d4_d1, e5_d1, ])
|
| 253 |
+
d1 = conv_block(d1, upsample_channels, n=1) # 320*320*320 --> 320*320*320
|
| 254 |
+
|
| 255 |
+
""" Deep Supervision Part"""
|
| 256 |
+
# last layer does not have batchnorm and relu
|
| 257 |
+
d1 = conv_block(d1, OUTPUT_CHANNELS, n=1, is_bn=False, is_relu=False)
|
| 258 |
+
d2 = conv_block(d2, OUTPUT_CHANNELS, n=1, is_bn=False, is_relu=False)
|
| 259 |
+
d3 = conv_block(d3, OUTPUT_CHANNELS, n=1, is_bn=False, is_relu=False)
|
| 260 |
+
d4 = conv_block(d4, OUTPUT_CHANNELS, n=1, is_bn=False, is_relu=False)
|
| 261 |
+
e5 = conv_block(e5, OUTPUT_CHANNELS, n=1, is_bn=False, is_relu=False)
|
| 262 |
+
|
| 263 |
+
# d1 = no need for upsampling
|
| 264 |
+
d2 = k.layers.UpSampling2D(size=(2, 2), interpolation='bilinear')(d2)
|
| 265 |
+
d3 = k.layers.UpSampling2D(size=(4, 4), interpolation='bilinear')(d3)
|
| 266 |
+
d4 = k.layers.UpSampling2D(size=(8, 8), interpolation='bilinear')(d4)
|
| 267 |
+
e5 = k.layers.UpSampling2D(size=(16, 16), interpolation='bilinear')(e5)
|
| 268 |
+
|
| 269 |
+
if OUTPUT_CHANNELS == 1:
|
| 270 |
+
d1 = k.activations.sigmoid(d1)
|
| 271 |
+
d2 = k.activations.sigmoid(d2)
|
| 272 |
+
d3 = k.activations.sigmoid(d3)
|
| 273 |
+
d4 = k.activations.sigmoid(d4)
|
| 274 |
+
e5 = k.activations.sigmoid(e5)
|
| 275 |
+
else:
|
| 276 |
+
d1 = k.activations.softmax(d1)
|
| 277 |
+
d2 = k.activations.softmax(d2)
|
| 278 |
+
d3 = k.activations.softmax(d3)
|
| 279 |
+
d4 = k.activations.softmax(d4)
|
| 280 |
+
e5 = k.activations.softmax(e5)
|
| 281 |
+
|
| 282 |
+
model = tf.keras.Model(inputs=input_layer, outputs=[d1, d2, d3, d4, e5], name='UNet_3Plus_DeepSup')
|
| 283 |
+
|
| 284 |
+
if(pretrained_weights):
|
| 285 |
+
model.load_weights(pretrained_weights)
|
| 286 |
+
|
| 287 |
+
return model
|
| 288 |
+
|
| 289 |
+
|
| 290 |
+
""" UNet_3Plus with Deep Supervison and Classification Guided Module"""
|
| 291 |
+
def UNet_3Plus_DeepSup_CGM(INPUT_SHAPE, OUTPUT_CHANNELS, pretrained_weights = None):
|
| 292 |
+
filters = [64, 128, 256, 512, 1024]
|
| 293 |
+
|
| 294 |
+
input_layer = k.layers.Input(shape=INPUT_SHAPE, name="input_layer") # 320*320*3
|
| 295 |
+
|
| 296 |
+
""" Encoder"""
|
| 297 |
+
# block 1
|
| 298 |
+
e1 = conv_block(input_layer, filters[0]) # 320*320*64
|
| 299 |
+
|
| 300 |
+
# block 2
|
| 301 |
+
e2 = k.layers.MaxPool2D(pool_size=(2, 2))(e1) # 160*160*64
|
| 302 |
+
e2 = conv_block(e2, filters[1]) # 160*160*128
|
| 303 |
+
|
| 304 |
+
# block 3
|
| 305 |
+
e3 = k.layers.MaxPool2D(pool_size=(2, 2))(e2) # 80*80*128
|
| 306 |
+
e3 = conv_block(e3, filters[2]) # 80*80*256
|
| 307 |
+
|
| 308 |
+
# block 4
|
| 309 |
+
e4 = k.layers.MaxPool2D(pool_size=(2, 2))(e3) # 40*40*256
|
| 310 |
+
e4 = conv_block(e4, filters[3]) # 40*40*512
|
| 311 |
+
|
| 312 |
+
# block 5, bottleneck layer
|
| 313 |
+
e5 = k.layers.MaxPool2D(pool_size=(2, 2))(e4) # 20*20*512
|
| 314 |
+
e5 = conv_block(e5, filters[4]) # 20*20*1024
|
| 315 |
+
|
| 316 |
+
""" Classification Guided Module. Part 1"""
|
| 317 |
+
cls = k.layers.Dropout(rate=0.5)(e5)
|
| 318 |
+
cls = k.layers.Conv2D(2, kernel_size=(1, 1), padding="same", strides=(1, 1))(cls)
|
| 319 |
+
cls = k.layers.GlobalMaxPooling2D()(cls)
|
| 320 |
+
cls = k.activations.sigmoid(cls)
|
| 321 |
+
cls = tf.argmax(cls, axis=-1)
|
| 322 |
+
cls = cls[..., tf.newaxis]
|
| 323 |
+
cls = tf.cast(cls, dtype=tf.float32, )
|
| 324 |
+
|
| 325 |
+
""" Decoder """
|
| 326 |
+
cat_channels = filters[0]
|
| 327 |
+
cat_blocks = len(filters)
|
| 328 |
+
upsample_channels = cat_blocks * cat_channels
|
| 329 |
+
|
| 330 |
+
""" d4 """
|
| 331 |
+
e1_d4 = k.layers.MaxPool2D(pool_size=(8, 8))(e1) # 320*320*64 --> 40*40*64
|
| 332 |
+
e1_d4 = conv_block(e1_d4, cat_channels, n=1) # 320*320*64 --> 40*40*64
|
| 333 |
+
|
| 334 |
+
e2_d4 = k.layers.MaxPool2D(pool_size=(4, 4))(e2) # 160*160*128 --> 40*40*128
|
| 335 |
+
e2_d4 = conv_block(e2_d4, cat_channels, n=1) # 160*160*128 --> 40*40*64
|
| 336 |
+
|
| 337 |
+
e3_d4 = k.layers.MaxPool2D(pool_size=(2, 2))(e3) # 80*80*256 --> 40*40*256
|
| 338 |
+
e3_d4 = conv_block(e3_d4, cat_channels, n=1) # 80*80*256 --> 40*40*64
|
| 339 |
+
|
| 340 |
+
e4_d4 = conv_block(e4, cat_channels, n=1) # 40*40*512 --> 40*40*64
|
| 341 |
+
|
| 342 |
+
e5_d4 = k.layers.UpSampling2D(size=(2, 2), interpolation='bilinear')(e5) # 80*80*256 --> 40*40*256
|
| 343 |
+
e5_d4 = conv_block(e5_d4, cat_channels, n=1) # 20*20*1024 --> 20*20*64
|
| 344 |
+
|
| 345 |
+
d4 = k.layers.concatenate([e1_d4, e2_d4, e3_d4, e4_d4, e5_d4])
|
| 346 |
+
d4 = conv_block(d4, upsample_channels, n=1) # 40*40*320 --> 40*40*320
|
| 347 |
+
|
| 348 |
+
""" d3 """
|
| 349 |
+
e1_d3 = k.layers.MaxPool2D(pool_size=(4, 4))(e1) # 320*320*64 --> 80*80*64
|
| 350 |
+
e1_d3 = conv_block(e1_d3, cat_channels, n=1) # 80*80*64 --> 80*80*64
|
| 351 |
+
|
| 352 |
+
e2_d3 = k.layers.MaxPool2D(pool_size=(2, 2))(e2) # 160*160*256 --> 80*80*256
|
| 353 |
+
e2_d3 = conv_block(e2_d3, cat_channels, n=1) # 80*80*256 --> 80*80*64
|
| 354 |
+
|
| 355 |
+
e3_d3 = conv_block(e3, cat_channels, n=1) # 80*80*512 --> 80*80*64
|
| 356 |
+
|
| 357 |
+
e4_d3 = k.layers.UpSampling2D(size=(2, 2), interpolation='bilinear')(d4) # 40*40*320 --> 80*80*320
|
| 358 |
+
e4_d3 = conv_block(e4_d3, cat_channels, n=1) # 80*80*320 --> 80*80*64
|
| 359 |
+
|
| 360 |
+
e5_d3 = k.layers.UpSampling2D(size=(4, 4), interpolation='bilinear')(e5) # 20*20*320 --> 80*80*320
|
| 361 |
+
e5_d3 = conv_block(e5_d3, cat_channels, n=1) # 80*80*320 --> 80*80*64
|
| 362 |
+
|
| 363 |
+
d3 = k.layers.concatenate([e1_d3, e2_d3, e3_d3, e4_d3, e5_d3])
|
| 364 |
+
d3 = conv_block(d3, upsample_channels, n=1) # 80*80*320 --> 80*80*320
|
| 365 |
+
|
| 366 |
+
""" d2 """
|
| 367 |
+
e1_d2 = k.layers.MaxPool2D(pool_size=(2, 2))(e1) # 320*320*64 --> 160*160*64
|
| 368 |
+
e1_d2 = conv_block(e1_d2, cat_channels, n=1) # 160*160*64 --> 160*160*64
|
| 369 |
+
|
| 370 |
+
e2_d2 = conv_block(e2, cat_channels, n=1) # 160*160*256 --> 160*160*64
|
| 371 |
+
|
| 372 |
+
d3_d2 = k.layers.UpSampling2D(size=(2, 2), interpolation='bilinear')(d3) # 80*80*320 --> 160*160*320
|
| 373 |
+
d3_d2 = conv_block(d3_d2, cat_channels, n=1) # 160*160*320 --> 160*160*64
|
| 374 |
+
|
| 375 |
+
d4_d2 = k.layers.UpSampling2D(size=(4, 4), interpolation='bilinear')(d4) # 40*40*320 --> 160*160*320
|
| 376 |
+
d4_d2 = conv_block(d4_d2, cat_channels, n=1) # 160*160*320 --> 160*160*64
|
| 377 |
+
|
| 378 |
+
e5_d2 = k.layers.UpSampling2D(size=(8, 8), interpolation='bilinear')(e5) # 20*20*320 --> 160*160*320
|
| 379 |
+
e5_d2 = conv_block(e5_d2, cat_channels, n=1) # 160*160*320 --> 160*160*64
|
| 380 |
+
|
| 381 |
+
d2 = k.layers.concatenate([e1_d2, e2_d2, d3_d2, d4_d2, e5_d2])
|
| 382 |
+
d2 = conv_block(d2, upsample_channels, n=1) # 160*160*320 --> 160*160*320
|
| 383 |
+
|
| 384 |
+
""" d1 """
|
| 385 |
+
e1_d1 = conv_block(e1, cat_channels, n=1) # 320*320*64 --> 320*320*64
|
| 386 |
+
|
| 387 |
+
d2_d1 = k.layers.UpSampling2D(size=(2, 2), interpolation='bilinear')(d2) # 160*160*320 --> 320*320*320
|
| 388 |
+
d2_d1 = conv_block(d2_d1, cat_channels, n=1) # 160*160*320 --> 160*160*64
|
| 389 |
+
|
| 390 |
+
d3_d1 = k.layers.UpSampling2D(size=(4, 4), interpolation='bilinear')(d3) # 80*80*320 --> 320*320*320
|
| 391 |
+
d3_d1 = conv_block(d3_d1, cat_channels, n=1) # 320*320*320 --> 320*320*64
|
| 392 |
+
|
| 393 |
+
d4_d1 = k.layers.UpSampling2D(size=(8, 8), interpolation='bilinear')(d4) # 40*40*320 --> 320*320*320
|
| 394 |
+
d4_d1 = conv_block(d4_d1, cat_channels, n=1) # 320*320*320 --> 320*320*64
|
| 395 |
+
|
| 396 |
+
e5_d1 = k.layers.UpSampling2D(size=(16, 16), interpolation='bilinear')(e5) # 20*20*320 --> 320*320*320
|
| 397 |
+
e5_d1 = conv_block(e5_d1, cat_channels, n=1) # 320*320*320 --> 320*320*64
|
| 398 |
+
|
| 399 |
+
d1 = k.layers.concatenate([e1_d1, d2_d1, d3_d1, d4_d1, e5_d1, ])
|
| 400 |
+
d1 = conv_block(d1, upsample_channels, n=1) # 320*320*320 --> 320*320*320
|
| 401 |
+
|
| 402 |
+
""" Deep Supervision Part"""
|
| 403 |
+
# last layer does not have batchnorm and relu
|
| 404 |
+
d1 = conv_block(d1, OUTPUT_CHANNELS, n=1, is_bn=False, is_relu=False)
|
| 405 |
+
d2 = conv_block(d2, OUTPUT_CHANNELS, n=1, is_bn=False, is_relu=False)
|
| 406 |
+
d3 = conv_block(d3, OUTPUT_CHANNELS, n=1, is_bn=False, is_relu=False)
|
| 407 |
+
d4 = conv_block(d4, OUTPUT_CHANNELS, n=1, is_bn=False, is_relu=False)
|
| 408 |
+
e5 = conv_block(e5, OUTPUT_CHANNELS, n=1, is_bn=False, is_relu=False)
|
| 409 |
+
|
| 410 |
+
# d1 = no need for upsampling
|
| 411 |
+
d2 = k.layers.UpSampling2D(size=(2, 2), interpolation='bilinear')(d2)
|
| 412 |
+
d3 = k.layers.UpSampling2D(size=(4, 4), interpolation='bilinear')(d3)
|
| 413 |
+
d4 = k.layers.UpSampling2D(size=(8, 8), interpolation='bilinear')(d4)
|
| 414 |
+
e5 = k.layers.UpSampling2D(size=(16, 16), interpolation='bilinear')(e5)
|
| 415 |
+
|
| 416 |
+
""" Classification Guided Module. Part 2"""
|
| 417 |
+
d1 = dotProduct(d1, cls)
|
| 418 |
+
d2 = dotProduct(d2, cls)
|
| 419 |
+
d3 = dotProduct(d3, cls)
|
| 420 |
+
d4 = dotProduct(d4, cls)
|
| 421 |
+
e5 = dotProduct(e5, cls)
|
| 422 |
+
|
| 423 |
+
if OUTPUT_CHANNELS == 1:
|
| 424 |
+
d1 = k.activations.sigmoid(d1)
|
| 425 |
+
d2 = k.activations.sigmoid(d2)
|
| 426 |
+
d3 = k.activations.sigmoid(d3)
|
| 427 |
+
d4 = k.activations.sigmoid(d4)
|
| 428 |
+
e5 = k.activations.sigmoid(e5)
|
| 429 |
+
else:
|
| 430 |
+
d1 = k.activations.softmax(d1)
|
| 431 |
+
d2 = k.activations.softmax(d2)
|
| 432 |
+
d3 = k.activations.softmax(d3)
|
| 433 |
+
d4 = k.activations.softmax(d4)
|
| 434 |
+
e5 = k.activations.softmax(e5)
|
| 435 |
+
|
| 436 |
+
model = tf.keras.Model(inputs=input_layer, outputs=[d1, d2, d3, d4, e5], name='UNet_3Plus_DeepSup_CGM')
|
| 437 |
+
if(pretrained_weights):
|
| 438 |
+
model.load_weights(pretrained_weights)
|
| 439 |
+
|
| 440 |
+
return model
|