File size: 4,831 Bytes
03fcf77
b2951df
03fcf77
 
 
0c776a5
03fcf77
 
 
b2951df
03fcf77
 
b2951df
03fcf77
 
 
 
 
b2951df
 
03fcf77
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b2951df
 
 
03fcf77
b2951df
 
 
03fcf77
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b2951df
03fcf77
 
b2951df
 
 
03fcf77
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b2951df
 
 
03fcf77
b2951df
03fcf77
 
 
b2951df
03fcf77
 
 
 
 
 
 
 
b2951df
03fcf77
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b2951df
03fcf77
b2951df
03fcf77
b2951df
 
 
03fcf77
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
from typing import Dict, Any, List, Tuple, Optional

from llama_index.llama_pack.base import BaseLlamaPack
from llama_index.llms import OpenAI
from llama_index.agent import ReActAgent

from llama_hub.tools.arxiv import ArxivToolSpec
from llama_hub.tools.wikipedia import WikipediaToolSpec
import functools

from io import StringIO
import sys


SUPPORTED_TOOLS = {
    "arxiv_search_tool": ArxivToolSpec,
    "wikipedia": WikipediaToolSpec,
}


class Capturing(list):
    """To capture the stdout from ReActAgent.chat with verbose=True. Taken from
    https://stackoverflow.com/questions/16571150/\
        how-to-capture-stdout-output-from-a-python-function-call
    """

    def __enter__(self):
        self._stdout = sys.stdout
        sys.stdout = self._stringio = StringIO()
        return self

    def __exit__(self, *args):
        self.extend(self._stringio.getvalue().splitlines())
        del self._stringio  # free up some memory
        sys.stdout = self._stdout


class GradioReActAgentPack(BaseLlamaPack):
    """Gradio chatbot to chat with a ReActAgent pack."""

    def __init__(
        self,
        tools_list: Optional[List[str]] = [k for k in SUPPORTED_TOOLS.keys()],
        **kwargs: Any,
    ) -> None:
        """Init params."""
        try:
            from ansi2html import Ansi2HTMLConverter
        except ImportError:
            raise ImportError("Please install ansi2html via `pip install ansi2html`")

        tools = []
        for t in tools_list:
            try:
                tools.append(SUPPORTED_TOOLS[t]())
            except KeyError:
                raise KeyError(f"Tool {t} is not supported.")
        self.tools = tools

        self.llm = OpenAI(model="gpt-4-1106-preview", max_tokens=2000)
        self.agent = ReActAgent.from_tools(
            tools=functools.reduce(
                lambda x, y: x.to_tool_list() + y.to_tool_list(), self.tools
            ),
            llm=self.llm,
            verbose=True,
        )

        self.thoughts = ""
        self.conv = Ansi2HTMLConverter()

    def get_modules(self) -> Dict[str, Any]:
        """Get modules."""
        return {"agent": self.agent, "llm": self.llm, "tools": self.tools}

    def _handle_user_message(self, user_message, history):
        """Handle the user submitted message. Clear message box, and append
        to the history."""
        return "", history + [(user_message, "")]

    def _generate_response(
        self, chat_history: List[Tuple[str, str]]
    ) -> Tuple[str, List[Tuple[str, str]]]:
        """Generate the response from agent, and capture the stdout of the
        ReActAgent's thoughts.
        """
        with Capturing() as output:
            response = self.agent.stream_chat(chat_history[-1][0])
        ansi = "\n========\n".join(output)
        html_output = self.conv.convert(ansi)
        for token in response.response_gen:
            chat_history[-1][1] += token
            yield chat_history, str(html_output)

    def _reset_chat(self) -> Tuple[str, str]:
        """Reset the agent's chat history. And clear all dialogue boxes."""
        # clear agent history
        self.agent.reset()
        return "", "", ""  # clear textboxes

    def run(self, *args: Any, **kwargs: Any) -> Any:
        """Run the pipeline."""
        import gradio as gr

        demo = gr.Blocks(
            theme="gstaff/xkcd",
            css="#box { height: 420px; overflow-y: scroll !important}",
        )
        with demo:
            gr.Markdown(
                "# Gradio ReActAgent Powered by LlamaIndex and LlamaHub 🦙\n"
                "This Gradio app is powered by LlamaIndex's `ReActAgent` with\n"
                "OpenAI's GPT-4-Turbo as the LLM. The tools are listed below.\n"
                "## Tools\n"
                "- [ArxivToolSpec](https://llamahub.ai/l/tools-arxiv)\n"
                "- [WikipediaToolSpec](https://llamahub.ai/l/tools-wikipedia)"
            )
            with gr.Row():
                chat_window = gr.Chatbot(
                    label="Message History",
                    scale=3,
                )
                console = gr.HTML(elem_id="box")
            with gr.Row():
                message = gr.Textbox(label="Write A Message", scale=4)
                clear = gr.ClearButton()

            message.submit(
                self._handle_user_message,
                [message, chat_window],
                [message, chat_window],
                queue=False,
            ).then(
                self._generate_response,
                chat_window,
                [chat_window, console],
            )
            clear.click(self._reset_chat, None, [message, chat_window, console])

        demo.launch(server_name="0.0.0.0", server_port=8080)


if __name__ == "__main__":
    GradioReActAgentPack(run_from_main=True).run()