File size: 13,912 Bytes
c426e13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
import math
import os
import random
import sys
import traceback

import cv2
import numpy as np
import pandas as pd
import skimage.draw
from albumentations import ImageCompression, OneOf, GaussianBlur, Blur
from albumentations.augmentations.functional import image_compression
from albumentations.augmentations.geometric.functional import rot90
from albumentations.pytorch.functional import img_to_tensor
from scipy.ndimage import binary_erosion, binary_dilation
from skimage import measure
from torch.utils.data import Dataset
import dlib

from training.datasets.validation_set import PUBLIC_SET


def prepare_bit_masks(mask):
    h, w = mask.shape
    mid_w = w // 2
    mid_h = w // 2
    masks = []
    ones = np.ones_like(mask)
    ones[:mid_h] = 0
    masks.append(ones)
    ones = np.ones_like(mask)
    ones[mid_h:] = 0
    masks.append(ones)
    ones = np.ones_like(mask)
    ones[:, :mid_w] = 0
    masks.append(ones)
    ones = np.ones_like(mask)
    ones[:, mid_w:] = 0
    masks.append(ones)
    ones = np.ones_like(mask)
    ones[:mid_h, :mid_w] = 0
    ones[mid_h:, mid_w:] = 0
    masks.append(ones)
    ones = np.ones_like(mask)
    ones[:mid_h, mid_w:] = 0
    ones[mid_h:, :mid_w] = 0
    masks.append(ones)
    return masks


detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor('libs/shape_predictor_68_face_landmarks.dat')


def blackout_convex_hull(img):
    try:
        rect = detector(img)[0]
        sp = predictor(img, rect)
        landmarks = np.array([[p.x, p.y] for p in sp.parts()])
        outline = landmarks[[*range(17), *range(26, 16, -1)]]
        Y, X = skimage.draw.polygon(outline[:, 1], outline[:, 0])
        cropped_img = np.zeros(img.shape[:2], dtype=np.uint8)
        cropped_img[Y, X] = 1
        # if random.random() > 0.5:
        #     img[cropped_img == 0] = 0
        #     #leave only face
        #     return img

        y, x = measure.centroid(cropped_img)
        y = int(y)
        x = int(x)
        first = random.random() > 0.5
        if random.random() > 0.5:
            if first:
                cropped_img[:y, :] = 0
            else:
                cropped_img[y:, :] = 0
        else:
            if first:
                cropped_img[:, :x] = 0
            else:
                cropped_img[:, x:] = 0

        img[cropped_img > 0] = 0
    except Exception as e:
        pass


def dist(p1, p2):
    return math.sqrt((p1[0] - p2[0]) ** 2 + (p1[1] - p2[1]) ** 2)


def remove_eyes(image, landmarks):
    image = image.copy()
    (x1, y1), (x2, y2) = landmarks[:2]
    mask = np.zeros_like(image[..., 0])
    line = cv2.line(mask, (x1, y1), (x2, y2), color=(1), thickness=2)
    w = dist((x1, y1), (x2, y2))
    dilation = int(w // 4)
    line = binary_dilation(line, iterations=dilation)
    image[line, :] = 0
    return image


def remove_nose(image, landmarks):
    image = image.copy()
    (x1, y1), (x2, y2) = landmarks[:2]
    x3, y3 = landmarks[2]
    mask = np.zeros_like(image[..., 0])
    x4 = int((x1 + x2) / 2)
    y4 = int((y1 + y2) / 2)
    line = cv2.line(mask, (x3, y3), (x4, y4), color=(1), thickness=2)
    w = dist((x1, y1), (x2, y2))
    dilation = int(w // 4)
    line = binary_dilation(line, iterations=dilation)
    image[line, :] = 0
    return image


def remove_mouth(image, landmarks):
    image = image.copy()
    (x1, y1), (x2, y2) = landmarks[-2:]
    mask = np.zeros_like(image[..., 0])
    line = cv2.line(mask, (x1, y1), (x2, y2), color=(1), thickness=2)
    w = dist((x1, y1), (x2, y2))
    dilation = int(w // 3)
    line = binary_dilation(line, iterations=dilation)
    image[line, :] = 0
    return image


def remove_landmark(image, landmarks):
    if random.random() > 0.5:
        image = remove_eyes(image, landmarks)
    elif random.random() > 0.5:
        image = remove_mouth(image, landmarks)
    elif random.random() > 0.5:
        image = remove_nose(image, landmarks)
    return image


def change_padding(image, part=5):
    h, w = image.shape[:2]
    # original padding was done with 1/3 from each side, too much
    pad_h = int(((3 / 5) * h) / part)
    pad_w = int(((3 / 5) * w) / part)
    image = image[h // 5 - pad_h:-h // 5 + pad_h, w // 5 - pad_w:-w // 5 + pad_w]
    return image


def blackout_random(image, mask, label):
    binary_mask = mask > 0.4 * 255
    h, w = binary_mask.shape[:2]

    tries = 50
    current_try = 1
    while current_try < tries:
        first = random.random() < 0.5
        if random.random() < 0.5:
            pivot = random.randint(h // 2 - h // 5, h // 2 + h // 5)
            bitmap_msk = np.ones_like(binary_mask)
            if first:
                bitmap_msk[:pivot, :] = 0
            else:
                bitmap_msk[pivot:, :] = 0
        else:
            pivot = random.randint(w // 2 - w // 5, w // 2 + w // 5)
            bitmap_msk = np.ones_like(binary_mask)
            if first:
                bitmap_msk[:, :pivot] = 0
            else:
                bitmap_msk[:, pivot:] = 0

        if label < 0.5 and np.count_nonzero(image * np.expand_dims(bitmap_msk, axis=-1)) / 3 > (h * w) / 5 \
                or np.count_nonzero(binary_mask * bitmap_msk) > 40:
            mask *= bitmap_msk
            image *= np.expand_dims(bitmap_msk, axis=-1)
            break
        current_try += 1
    return image


def blend_original(img):
    img = img.copy()
    h, w = img.shape[:2]
    rect = detector(img)
    if len(rect) == 0:
        return img
    else:
        rect = rect[0]
    sp = predictor(img, rect)
    landmarks = np.array([[p.x, p.y] for p in sp.parts()])
    outline = landmarks[[*range(17), *range(26, 16, -1)]]
    Y, X = skimage.draw.polygon(outline[:, 1], outline[:, 0])
    raw_mask = np.zeros(img.shape[:2], dtype=np.uint8)
    raw_mask[Y, X] = 1
    face = img * np.expand_dims(raw_mask, -1)

    # add warping
    h1 = random.randint(h - h // 2, h + h // 2)
    w1 = random.randint(w - w // 2, w + w // 2)
    while abs(h1 - h) < h // 3 and abs(w1 - w) < w // 3:
        h1 = random.randint(h - h // 2, h + h // 2)
        w1 = random.randint(w - w // 2, w + w // 2)
    face = cv2.resize(face, (w1, h1), interpolation=random.choice([cv2.INTER_LINEAR, cv2.INTER_AREA, cv2.INTER_CUBIC]))
    face = cv2.resize(face, (w, h), interpolation=random.choice([cv2.INTER_LINEAR, cv2.INTER_AREA, cv2.INTER_CUBIC]))

    raw_mask = binary_erosion(raw_mask, iterations=random.randint(4, 10))
    img[raw_mask, :] = face[raw_mask, :]
    if random.random() < 0.2:
        img = OneOf([GaussianBlur(), Blur()], p=0.5)(image=img)["image"]
    # image compression
    if random.random() < 0.5:
        img = ImageCompression(quality_lower=40, quality_upper=95)(image=img)["image"]
    return img


class DeepFakeClassifierDataset(Dataset):

    def __init__(self,
                 data_path="/mnt/sota/datasets/deepfake",
                 fold=0,
                 label_smoothing=0.01,
                 padding_part=3,
                 hardcore=True,
                 crops_dir="crops",
                 folds_csv="folds.csv",
                 normalize={"mean": [0.485, 0.456, 0.406],
                            "std": [0.229, 0.224, 0.225]},
                 rotation=False,
                 mode="train",
                 reduce_val=True,
                 oversample_real=True,
                 transforms=None
                 ):
        super().__init__()
        self.data_root = data_path
        self.fold = fold
        self.folds_csv = folds_csv
        self.mode = mode
        self.rotation = rotation
        self.padding_part = padding_part
        self.hardcore = hardcore
        self.crops_dir = crops_dir
        self.label_smoothing = label_smoothing
        self.normalize = normalize
        self.transforms = transforms
        self.df = pd.read_csv(self.folds_csv)
        self.oversample_real = oversample_real
        self.reduce_val = reduce_val

    def __getitem__(self, index: int):

        while True:
            video, img_file, label, ori_video, frame, fold = self.data[index]
            try:
                if self.mode == "train":
                    label = np.clip(label, self.label_smoothing, 1 - self.label_smoothing)
                img_path = os.path.join(self.data_root, self.crops_dir, video, img_file)
                image = cv2.imread(img_path, cv2.IMREAD_COLOR)
                image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
                mask = np.zeros(image.shape[:2], dtype=np.uint8)
                diff_path = os.path.join(self.data_root, "diffs", video, img_file[:-4] + "_diff.png")
                try:
                    msk = cv2.imread(diff_path, cv2.IMREAD_GRAYSCALE)
                    if msk is not None:
                        mask = msk
                except:
                    print("not found mask", diff_path)
                    pass
                if self.mode == "train" and self.hardcore and not self.rotation:
                    landmark_path = os.path.join(self.data_root, "landmarks", ori_video, img_file[:-4] + ".npy")
                    if os.path.exists(landmark_path) and random.random() < 0.7:
                        landmarks = np.load(landmark_path)
                        image = remove_landmark(image, landmarks)
                    elif random.random() < 0.2:
                        blackout_convex_hull(image)
                    elif random.random() < 0.1:
                        binary_mask = mask > 0.4 * 255
                        masks = prepare_bit_masks((binary_mask * 1).astype(np.uint8))
                        tries = 6
                        current_try = 1
                        while current_try < tries:
                            bitmap_msk = random.choice(masks)
                            if label < 0.5 or np.count_nonzero(mask * bitmap_msk) > 20:
                                mask *= bitmap_msk
                                image *= np.expand_dims(bitmap_msk, axis=-1)
                                break
                            current_try += 1
                if self.mode == "train" and self.padding_part > 3:
                    image = change_padding(image, self.padding_part)
                valid_label = np.count_nonzero(mask[mask > 20]) > 32 or label < 0.5
                valid_label = 1 if valid_label else 0
                rotation = 0
                if self.transforms:
                    data = self.transforms(image=image, mask=mask)
                    image = data["image"]
                    mask = data["mask"]
                if self.mode == "train" and self.hardcore and self.rotation:
                    # landmark_path = os.path.join(self.data_root, "landmarks", ori_video, img_file[:-4] + ".npy")
                    dropout = 0.8 if label > 0.5 else 0.6
                    if self.rotation:
                        dropout *= 0.7
                    elif random.random() < dropout:
                        blackout_random(image, mask, label)

                #
                # os.makedirs("../images", exist_ok=True)
                # cv2.imwrite(os.path.join("../images", video+ "_" + str(1 if label > 0.5 else 0) + "_"+img_file), image[...,::-1])

                if self.mode == "train" and self.rotation:
                    rotation = random.randint(0, 3)
                    image = rot90(image, rotation)

                image = img_to_tensor(image, self.normalize)
                return {"image": image, "labels": np.array((label,)), "img_name": os.path.join(video, img_file),
                        "valid": valid_label, "rotations": rotation}
            except Exception as e:
                traceback.print_exc(file=sys.stdout)
                print("Broken image", os.path.join(self.data_root, self.crops_dir, video, img_file))
                index = random.randint(0, len(self.data) - 1)

    def random_blackout_landmark(self, image, mask, landmarks):
        x, y = random.choice(landmarks)
        first = random.random() > 0.5
        #  crop half face either vertically or horizontally
        if random.random() > 0.5:
            # width
            if first:
                image[:, :x] = 0
                mask[:, :x] = 0
            else:
                image[:, x:] = 0
                mask[:, x:] = 0
        else:
            # height
            if first:
                image[:y, :] = 0
                mask[:y, :] = 0
            else:
                image[y:, :] = 0
                mask[y:, :] = 0

    def reset(self, epoch, seed):
        self.data = self._prepare_data(epoch, seed)

    def __len__(self) -> int:
        return len(self.data)

    def get_distribution(self):
        return self.n_real, self.n_fake

    def _prepare_data(self, epoch, seed):
        df = self.df
        if self.mode == "train":
            rows = df[df["fold"] != self.fold]
        else:
            rows = df[df["fold"] == self.fold]
        seed = (epoch + 1) * seed
        if self.oversample_real:
            rows = self._oversample(rows, seed)
        if self.mode == "val" and self.reduce_val:
            # every 2nd frame, to speed up validation
            rows = rows[rows["frame"] % 20 == 0]
            # another option is to use public validation set
            #rows = rows[rows["video"].isin(PUBLIC_SET)]

        print(
            "real {} fakes {} mode {}".format(len(rows[rows["label"] == 0]), len(rows[rows["label"] == 1]), self.mode))
        data = rows.values

        self.n_real = len(rows[rows["label"] == 0])
        self.n_fake = len(rows[rows["label"] == 1])
        np.random.seed(seed)
        np.random.shuffle(data)
        return data

    def _oversample(self, rows: pd.DataFrame, seed):
        real = rows[rows["label"] == 0]
        fakes = rows[rows["label"] == 1]
        num_real = real["video"].count()
        if self.mode == "train":
            fakes = fakes.sample(n=num_real, replace=False, random_state=seed)
        return pd.concat([real, fakes])