Spaces:
Build error
Build error
File size: 2,738 Bytes
c426e13 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 |
import argparse
import os
import re
import time
import torch
from kernel_utils import VideoReader, FaceExtractor, confident_strategy, predict_on_video
from training.zoo.classifiers import DeepFakeClassifier
import gradio as gr
def model_fn(model_dir):
model_path = os.path.join(model_dir, 'b7_ns_best.pth')
model = DeepFakeClassifier(encoder="tf_efficientnet_b7_ns") # default: CPU
checkpoint = torch.load(model_path, map_location="cpu")
state_dict = checkpoint.get("state_dict", checkpoint)
model.load_state_dict({re.sub("^module.", "", k): v for k, v in state_dict.items()}, strict=True)
model.eval()
del checkpoint
#models.append(model.half())
return model
def convert_result(pred, class_names=["Real", "Fake"]):
preds = [pred, 1 - pred]
assert len(class_names) == len(preds), "Class / Prediction should have the same length"
return {n: p for n, p in zip(class_names, preds)}
def predict_fn(model, video, meta):
start = time.time()
prediction = predict_on_video(face_extractor=meta["face_extractor"],
video_path=video,
batch_size=meta["fps"],
input_size=meta["input_size"],
models=model,
strategy=meta["strategy"],
apply_compression=False,
device='cpu')
elapsed_time = round(time.time() - start, 2)
prediction = convert_result(prediction)
return prediction, elapsed_time
# Create title, description and article strings
title = "Deepfake Detector (private)"
description = "A video Deepfake Classifier (code: https://github.com/selimsef/dfdc_deepfake_challenge)"
example_list = ["examples/" + str(p) for p in os.listdir("examples/")]
# Environments
model_dir = 'weights'
frames_per_video = 32
video_reader = VideoReader()
video_read_fn = lambda x: video_reader.read_frames(x, num_frames=frames_per_video)
face_extractor = FaceExtractor(video_read_fn)
input_size = 380
strategy = confident_strategy
class_names = ["Real", "Fake"]
meta = {"fps": 32,
"face_extractor": face_extractor,
"input_size": input_size,
"strategy": strategy}
model = model_fn(model_dir)
"""
if __name__ == '__main__':
video_path = "nlurbvsozt.mp4"
model = model_fn(model_dir)
a, b = predict_fn([model], video_path, meta)
print(a, b)
"""
# Create the Gradio demo
demo = gr.Interface(fn=predict_fn, # mapping function from input to output
inputs=[[model], gr.Video(autosize=True), meta],
outputs=[gr.Label(num_top_classes=2, label="Predictions"), # what are the outputs?
gr.Number(label="Prediction time (s)")], # our fn has two outputs, therefore we have two outputs
examples=example_list,
title=title,
description=description)
# Launch the demo!
demo.launch(debug=False,) # Hugging face space don't need shareable_links
|