Update app.py
Browse files
app.py
CHANGED
@@ -124,194 +124,103 @@ import numpy as np
|
|
124 |
import mediapipe as mp
|
125 |
from torchvision import models, transforms
|
126 |
from tempfile import NamedTemporaryFile
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
transforms.Normalize(
|
172 |
-
mean=[0.485, 0.456, 0.406],
|
173 |
-
std=[0.229, 0.224, 0.225]
|
174 |
-
)
|
175 |
-
])
|
176 |
-
|
177 |
-
def get_face_bbox(self, landmarks, frame_shape: Tuple[int, int]) -> Tuple[int, int, int, int]:
|
178 |
-
"""Extract face bounding box from landmarks."""
|
179 |
-
h, w = frame_shape[:2]
|
180 |
-
xs = [lm.x * w for lm in landmarks.landmark]
|
181 |
-
ys = [lm.y * h for lm in landmarks.landmark]
|
182 |
-
return (
|
183 |
-
max(0, int(min(xs))),
|
184 |
-
max(0, int(min(ys))),
|
185 |
-
min(w, int(max(xs))),
|
186 |
-
min(h, int(max(ys)))
|
187 |
-
)
|
188 |
-
|
189 |
-
def process_frame(self, frame: np.ndarray) -> np.ndarray:
|
190 |
-
"""Process a single frame to detect deepfakes."""
|
191 |
rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
192 |
|
193 |
-
#
|
194 |
-
|
195 |
-
if
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
face_tensor = self.transform(face_crop).unsqueeze(0)
|
225 |
-
with torch.no_grad():
|
226 |
-
output = torch.softmax(self.model(face_tensor), dim=1)
|
227 |
-
fake_confidence = output[0, 1].item() * 100
|
228 |
-
except Exception as e:
|
229 |
-
logger.error(f"Error during inference: {str(e)}")
|
230 |
-
return frame
|
231 |
-
|
232 |
-
# Draw results
|
233 |
-
label = "Fake" if fake_confidence > 50 else "Real"
|
234 |
-
color = (0, 0, 255) if label == "Fake" else (0, 255, 0)
|
235 |
-
label_text = f"{label} ({fake_confidence:.2f}%)"
|
236 |
-
|
237 |
-
cv2.rectangle(frame, (x_min, y_min), (x_max, y_max), color, 2)
|
238 |
-
cv2.putText(frame, label_text, (x_min, y_min - 10),
|
239 |
-
cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 1)
|
240 |
-
|
241 |
-
return frame
|
242 |
-
|
243 |
-
def process_video(self, video_path: str) -> Optional[str]:
|
244 |
-
"""Process a video file and return path to processed video."""
|
245 |
-
try:
|
246 |
-
cap = cv2.VideoCapture(video_path)
|
247 |
-
if not cap.isOpened():
|
248 |
-
logger.error("Error opening video file")
|
249 |
-
return None
|
250 |
-
|
251 |
-
# Get video properties
|
252 |
-
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
253 |
-
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
254 |
-
fps = int(cap.get(cv2.CAP_PROP_FPS))
|
255 |
-
|
256 |
-
# Set up output video
|
257 |
-
output_path = str(Path(video_path).with_suffix('')) + "_processed.mp4"
|
258 |
-
output_video = cv2.VideoWriter(
|
259 |
-
output_path,
|
260 |
-
cv2.VideoWriter_fourcc(*'mp4v'),
|
261 |
-
fps,
|
262 |
-
(width, height)
|
263 |
-
)
|
264 |
-
|
265 |
-
# Process frames
|
266 |
-
while cap.isOpened():
|
267 |
-
ret, frame = cap.read()
|
268 |
-
if not ret:
|
269 |
-
break
|
270 |
-
|
271 |
-
processed_frame = self.process_frame(frame)
|
272 |
-
output_video.write(processed_frame)
|
273 |
-
|
274 |
-
# Clean up
|
275 |
-
cap.release()
|
276 |
-
output_video.release()
|
277 |
-
|
278 |
-
return output_path
|
279 |
-
|
280 |
-
except Exception as e:
|
281 |
-
logger.error(f"Error processing video: {str(e)}")
|
282 |
-
return None
|
283 |
|
284 |
def gradio_interface(video_file):
|
285 |
-
"""Gradio interface function."""
|
286 |
if video_file is None:
|
287 |
return "Error: No video uploaded."
|
288 |
-
|
289 |
-
detector = DeepfakeDetector()
|
290 |
-
|
291 |
with NamedTemporaryFile(delete=False, suffix=".mp4") as temp_file:
|
292 |
temp_file_path = temp_file.name
|
293 |
with open(video_file, "rb") as uploaded_file:
|
294 |
temp_file.write(uploaded_file.read())
|
295 |
-
|
296 |
-
output_path =
|
297 |
-
if output_path is None:
|
298 |
-
return "Error processing video"
|
299 |
-
|
300 |
return output_path
|
301 |
|
302 |
-
# Create Gradio interface
|
303 |
iface = gr.Interface(
|
304 |
fn=gradio_interface,
|
305 |
inputs=gr.Video(label="Upload Video"),
|
306 |
outputs=gr.Video(label="Processed Video"),
|
307 |
title="Deepfake Detection",
|
308 |
-
description="Upload a video to detect deepfakes"
|
309 |
-
examples=[], # Add example videos here if available
|
310 |
)
|
311 |
|
312 |
if __name__ == "__main__":
|
313 |
-
iface.launch(
|
314 |
-
server_name="0.0.0.0",
|
315 |
-
share=True, # Set to True to create a public link
|
316 |
-
debug=True
|
317 |
-
)
|
|
|
124 |
import mediapipe as mp
|
125 |
from torchvision import models, transforms
|
126 |
from tempfile import NamedTemporaryFile
|
127 |
+
|
128 |
+
# Initialize MediaPipe Face Detection and Face Mesh
|
129 |
+
mp_face_detection = mp.solutions.face_detection
|
130 |
+
mp_face_mesh = mp.solutions.face_mesh
|
131 |
+
face_detection = mp_face_detection.FaceDetection(model_selection=1, min_detection_confidence=0.5)
|
132 |
+
face_mesh = mp_face_mesh.FaceMesh(static_image_mode=False, max_num_faces=1, min_detection_confidence=0.5)
|
133 |
+
|
134 |
+
# Initialize ResNet-34 model with random weights
|
135 |
+
def create_model():
|
136 |
+
model = models.resnet34(pretrained=False)
|
137 |
+
model.fc = torch.nn.Linear(model.fc.in_features, 2)
|
138 |
+
return model
|
139 |
+
|
140 |
+
model = create_model()
|
141 |
+
model.eval()
|
142 |
+
|
143 |
+
# Define transformation for face images
|
144 |
+
transform = transforms.Compose([
|
145 |
+
transforms.ToPILImage(),
|
146 |
+
transforms.Resize((224, 224)),
|
147 |
+
transforms.ToTensor(),
|
148 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
149 |
+
])
|
150 |
+
|
151 |
+
def get_face_bbox(landmarks, frame_shape):
|
152 |
+
h, w = frame_shape[:2]
|
153 |
+
xs = [lm.x * w for lm in landmarks.landmark]
|
154 |
+
ys = [lm.y * h for lm in landmarks.landmark]
|
155 |
+
return int(min(xs)), int(min(ys)), int(max(xs)), int(max(ys))
|
156 |
+
|
157 |
+
def process_video(video_path: str):
|
158 |
+
cap = cv2.VideoCapture(video_path)
|
159 |
+
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
160 |
+
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
161 |
+
fps = int(cap.get(cv2.CAP_PROP_FPS))
|
162 |
+
|
163 |
+
output_path = video_path.replace(".mp4", "_processed.mp4")
|
164 |
+
output_video = cv2.VideoWriter(output_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (width, height))
|
165 |
+
|
166 |
+
while cap.isOpened():
|
167 |
+
ret, frame = cap.read()
|
168 |
+
if not ret:
|
169 |
+
break
|
170 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
171 |
rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
172 |
|
173 |
+
# Face detection
|
174 |
+
results = face_detection.process(rgb_frame)
|
175 |
+
if results.detections:
|
176 |
+
for detection in results.detections:
|
177 |
+
# Get face landmarks
|
178 |
+
mesh_results = face_mesh.process(rgb_frame)
|
179 |
+
if mesh_results.multi_face_landmarks:
|
180 |
+
for face_landmarks in mesh_results.multi_face_landmarks:
|
181 |
+
x_min, y_min, x_max, y_max = get_face_bbox(face_landmarks, frame.shape)
|
182 |
+
|
183 |
+
face_crop = rgb_frame[y_min:y_max, x_min:x_max]
|
184 |
+
if face_crop.size == 0:
|
185 |
+
continue
|
186 |
+
|
187 |
+
face_tensor = transform(face_crop).unsqueeze(0)
|
188 |
+
with torch.no_grad():
|
189 |
+
output = torch.softmax(model(face_tensor), dim=1)
|
190 |
+
fake_confidence = output[0, 1].item() * 100
|
191 |
+
label = "Fake" if fake_confidence > 50 else "Real"
|
192 |
+
color = (0, 0, 255) if label == "Fake" else (0, 255, 0)
|
193 |
+
label_text = f"{label} ({fake_confidence:.2f}%)"
|
194 |
+
|
195 |
+
cv2.rectangle(frame, (x_min, y_min), (x_max, y_max), color, 2)
|
196 |
+
cv2.putText(frame, label_text, (x_min, y_min - 10),
|
197 |
+
cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 1)
|
198 |
+
|
199 |
+
output_video.write(frame)
|
200 |
+
|
201 |
+
cap.release()
|
202 |
+
output_video.release()
|
203 |
+
return output_path
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
204 |
|
205 |
def gradio_interface(video_file):
|
|
|
206 |
if video_file is None:
|
207 |
return "Error: No video uploaded."
|
208 |
+
|
|
|
|
|
209 |
with NamedTemporaryFile(delete=False, suffix=".mp4") as temp_file:
|
210 |
temp_file_path = temp_file.name
|
211 |
with open(video_file, "rb") as uploaded_file:
|
212 |
temp_file.write(uploaded_file.read())
|
213 |
+
|
214 |
+
output_path = process_video(temp_file_path)
|
|
|
|
|
|
|
215 |
return output_path
|
216 |
|
|
|
217 |
iface = gr.Interface(
|
218 |
fn=gradio_interface,
|
219 |
inputs=gr.Video(label="Upload Video"),
|
220 |
outputs=gr.Video(label="Processed Video"),
|
221 |
title="Deepfake Detection",
|
222 |
+
description="Upload a video to detect deepfakes using MediaPipe face detection and ResNet-34 model."
|
|
|
223 |
)
|
224 |
|
225 |
if __name__ == "__main__":
|
226 |
+
iface.launch(share=True)
|
|
|
|
|
|
|
|