Spaces:
Sleeping
Sleeping
""" | |
import gradio as gr | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
# Load your fine-tuned model and tokenizer | |
model_name = "crystal99/my-fine-tuned-model" | |
model = AutoModelForCausalLM.from_pretrained(model_name) | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
# Define the text generation function | |
def generate_text(prompt): | |
inputs = tokenizer(prompt, return_tensors="pt") | |
outputs = model.generate(inputs['input_ids'], max_length=100, num_return_sequences=1) | |
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=False) | |
return generated_text | |
# Set up the Gradio interface | |
iface = gr.Interface(fn=generate_text, inputs="text", outputs="text", title="Text Generator using Fine-Tuned Model") | |
# Launch the Gradio interface | |
iface.launch() | |
""" | |
import gradio as gr | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import torch | |
# Load your fine-tuned model and tokenizer | |
model_name = "crystal99/my-fine-tuned-model" | |
model = AutoModelForCausalLM.from_pretrained(model_name) | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
# Move model to GPU if available and enable fp16 for faster inference | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
model.to(device) | |
# Define the text generation function | |
def generate_text(prompt): | |
# Prevent gradient calculation to speed up inference | |
with torch.no_grad(): | |
inputs = tokenizer(f"<|STARTOFTEXT|> <|USER|> {prompt} <|BOT|>", return_tensors="pt").to(device) | |
outputs = model.generate(inputs['input_ids'], max_length=100, num_return_sequences=1, do_sample=False) | |
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=False) | |
return generated_text | |
# Set up the Gradio interface | |
iface = gr.Interface(fn=generate_text, inputs="text", outputs="text", title="Text Generator using Fine-Tuned Model") | |
# Launch the Gradio interface | |
iface.launch() | |