File size: 10,270 Bytes
41b743c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
{
  "qwen2-7b-instruct": {
    "feature": "qwen2-7b-instruct \u2012 Chinese & English LLM for language, coding, mathematics and reasoning; costs $0.20 per M input tokens and $0.20 per M output tokens on Together AI.",
    "input_price": 0.2,
    "output_price": 0.2,
    "model": "qwen/qwen2-7b-instruct"
  },
  "qwen2-7b-instruct_think": {
    "feature": "qwen2-7b-instruct \u2012 Chinese & English LLM for language, coding, mathematics and reasoning; costs $0.20 per M input tokens and $0.20 per M output tokens on Together AI.",
    "input_price": 0.2,
    "output_price": 0.2,
    "model": "qwen/qwen2-7b-instruct"
  },
  "qwen2.5-7b-instruct": {
    "feature": "qwen2.5-7b-instruct \u2012 upgraded Qwen with stronger multilingual capability; priced at $0.30 /M input and $0.30 /M output.",
    "input_price": 0.2,
    "output_price": 0.2,
    "model": "qwen/qwen2.5-7b-instruct"
  },
  "qwen2.5-7b-instruct_think": {
    "feature": "qwen2.5-7b-instruct \u2012 upgraded Qwen with stronger multilingual capability; priced at $0.30 /M input and $0.30 /M output.",
    "input_price": 0.2,
    "output_price": 0.2,
    "model": "qwen/qwen2.5-7b-instruct"
  },
  "gemma-7b": {
    "feature": "gemma-7b \u2012 Google\u2019s lightweight 7 B model for text and code; Together cost is $0.20 /M input and $0.20 /M output.",
    "input_price": 0.2,
    "output_price": 0.2,
    "model": "google/gemma-7b"
  },
  "gemma-7b_think": {
    "feature": "gemma-7b \u2012 Google\u2019s lightweight 7 B model for text and code; Together cost is $0.20 /M input and $0.20 /M output.",
    "input_price": 0.2,
    "output_price": 0.2,
    "model": "google/gemma-7b"
  },
  "codegemma-7b": {
    "feature": "codegemma-7b \u2012 Gemma variant focused on code generation & completion; $0.20 /M input, $0.20 /M output.",
    "input_price": 0.2,
    "output_price": 0.2,
    "model": "google/codegemma-7b"
  },
  "codegemma-7b_think": {
    "feature": "codegemma-7b \u2012 Gemma variant focused on code generation & completion; $0.20 /M input, $0.20 /M output.",
    "input_price": 0.2,
    "output_price": 0.2,
    "model": "google/codegemma-7b"
  },
  "gemma-2-9b-it": {
    "feature": "gemma-2-9b-it \u2012 2.9 B instruction-tuned Gemma for general text; ultralow $0.10 /M input and $0.10 /M output.",
    "input_price": 0.1,
    "output_price": 0.1,
    "model": "google/gemma-2-9b-it"
  },
  "gemma-2-9b-it_think": {
    "feature": "gemma-2-9b-it \u2012 2.9 B instruction-tuned Gemma for general text; ultralow $0.10 /M input and $0.10 /M output.",
    "input_price": 0.1,
    "output_price": 0.1,
    "model": "google/gemma-2-9b-it"
  },
  "llama-3.1-8b-instruct": {
    "feature": "llama-3.1-8b-instruct \u2012 Meta\u2019s 8 B Llama-3 series for chat & reasoning; $0.20 /M input and $0.20 /M output.",
    "input_price": 0.2,
    "output_price": 0.2,
    "model": "meta/llama-3.1-8b-instruct"
  },
  "llama-3.1-8b-instruct_think": {
    "feature": "llama-3.1-8b-instruct \u2012 Meta\u2019s 8 B Llama-3 series for chat & reasoning; $0.20 /M input and $0.20 /M output.",
    "input_price": 0.2,
    "output_price": 0.2,
    "model": "meta/llama-3.1-8b-instruct"
  },
  "granite-3.0-8b-instruct": {
    "feature": "granite-3.0-8b-instruct \u2012 IBM small LLM supporting RAG, summarization & code; $0.20 /M input, $0.20 /M output.",
    "input_price": 0.2,
    "output_price": 0.2,
    "model": "ibm/granite-3.0-8b-instruct"
  },
  "granite-3.0-8b-instruct_think": {
    "feature": "granite-3.0-8b-instruct \u2012 IBM small LLM supporting RAG, summarization & code; $0.20 /M input, $0.20 /M output.",
    "input_price": 0.2,
    "output_price": 0.2,
    "model": "ibm/granite-3.0-8b-instruct"
  },
  "llama3-chatqa-1.5-8b": {
    "feature": "llama3-chatqa-1.5-8b \u2012 NVIDIA fine-tuned 8 B for QA & reasoning; $0.20 /M input and output.",
    "input_price": 0.2,
    "output_price": 0.2,
    "model": "nvidia/llama3-chatqa-1.5-8b"
  },
  "llama3-chatqa-1.5-8b_think": {
    "feature": "llama3-chatqa-1.5-8b \u2012 NVIDIA fine-tuned 8 B for QA & reasoning; $0.20 /M input and output.",
    "input_price": 0.2,
    "output_price": 0.2,
    "model": "nvidia/llama3-chatqa-1.5-8b"
  },
  "mistral-nemo-12b-instruct": {
    "feature": "mistral-nemo-12b-instruct \u2012 12 B model combining Mistral and NeMo tech; $0.30 /M input, $0.30 /M output.",
    "input_price": 0.3,
    "output_price": 0.3,
    "model": "nv-mistralai/mistral-nemo-12b-instruct"
  },
  "mistral-nemo-12b-instruct_think": {
    "feature": "mistral-nemo-12b-instruct \u2012 12 B model combining Mistral and NeMo tech; $0.30 /M input, $0.30 /M output.",
    "input_price": 0.3,
    "output_price": 0.3,
    "model": "nv-mistralai/mistral-nemo-12b-instruct"
  },
  "mistral-7b-instruct-v0.3": {
    "feature": "mistral-7b-instruct-v0.3 \u2012 fast 7 B model for instruction following; $0.20 /M in & out.",
    "input_price": 0.2,
    "output_price": 0.2,
    "model": "mistralai/mistral-7b-instruct-v0.3"
  },
  "mistral-7b-instruct-v0.3_think": {
    "feature": "mistral-7b-instruct-v0.3 \u2012 fast 7 B model for instruction following; $0.20 /M in & out.",
    "input_price": 0.2,
    "output_price": 0.2,
    "model": "mistralai/mistral-7b-instruct-v0.3"
  },
  "llama-3.3-nemotron-super-49b-v1": {
    "feature": "llama-3.3-nemotron-super-49b-v1 \u2012 49 B Nemotron with high accuracy; $0.90 /M input and output.",
    "input_price": 0.9,
    "output_price": 0.9,
    "model": "nvidia/llama-3.3-nemotron-super-49b-v1"
  },
  "llama-3.3-nemotron-super-49b-v1_think": {
    "feature": "llama-3.3-nemotron-super-49b-v1 \u2012 49 B Nemotron with high accuracy; $0.90 /M input and output.",
    "input_price": 0.9,
    "output_price": 0.9,
    "model": "nvidia/llama-3.3-nemotron-super-49b-v1"
  },
  "llama-3.1-nemotron-51b-instruct": {
    "feature": "llama-3.1-nemotron-51b-instruct \u2012 51 B NVIDIA alignment model; $0.90 /M in & out.",
    "input_price": 0.9,
    "output_price": 0.9,
    "model": "nvidia/llama-3.1-nemotron-51b-instruct"
  },
  "llama-3.1-nemotron-51b-instruct_think": {
    "feature": "llama-3.1-nemotron-51b-instruct \u2012 51 B NVIDIA alignment model; $0.90 /M in & out.",
    "input_price": 0.9,
    "output_price": 0.9,
    "model": "nvidia/llama-3.1-nemotron-51b-instruct"
  },
  "llama3-chatqa-1.5-70b": {
    "feature": "llama3-chatqa-1.5-70b \u2012 70 B chat-optimized Llama; $0.90 /M input and output.",
    "input_price": 0.9,
    "output_price": 0.9,
    "model": "nvidia/llama3-chatqa-1.5-70b"
  },
  "llama3-chatqa-1.5-70b_think": {
    "feature": "llama3-chatqa-1.5-70b \u2012 70 B chat-optimized Llama; $0.90 /M input and output.",
    "input_price": 0.9,
    "output_price": 0.9,
    "model": "nvidia/llama3-chatqa-1.5-70b"
  },
  "llama-3.1-70b-instruct": {
    "feature": "llama-3.1-70b-instruct \u2012 Meta 70 B for complex conversations; $0.90 /M input/output.",
    "input_price": 0.9,
    "output_price": 0.9,
    "model": "meta/llama3-70b-instruct"
  },
  "llama-3.1-70b-instruct_think": {
    "feature": "llama-3.1-70b-instruct \u2012 Meta 70 B for complex conversations; $0.90 /M input/output.",
    "input_price": 0.9,
    "output_price": 0.9,
    "model": "meta/llama3-70b-instruct"
  },
  "llama3-70b-instruct": {
    "feature": "llama3-70b-instruct \u2012 alternate naming of Meta\u2019s 70 B; $0.90 /M input & output.",
    "input_price": 0.9,
    "output_price": 0.9,
    "model": "meta/llama-3.1-8b-instruct"
  },
  "llama3-70b-instruct_think": {
    "feature": "llama3-70b-instruct \u2012 alternate naming of Meta\u2019s 70 B; $0.90 /M input & output.",
    "input_price": 0.9,
    "output_price": 0.9,
    "model": "meta/llama-3.1-8b-instruct"
  },
  "granite-34b-code-instruct": {
    "feature": "granite-34b-code-instruct \u2012 34 B IBM coder model; $0.80 /M input and output.",
    "input_price": 0.8,
    "output_price": 0.8,
    "model": "ibm/granite-34b-code-instruct"
  },
  "granite-34b-code-instruct_think": {
    "feature": "granite-34b-code-instruct \u2012 34 B IBM coder model; $0.80 /M input and output.",
    "input_price": 0.8,
    "output_price": 0.8,
    "model": "ibm/granite-34b-code-instruct"
  },
  "mixtral-8x7b-instruct-v0.1": {
    "feature": "mixtral-8\u00d77b-instruct-v0.1 \u2012 56 B MoE (8\u00d77 B) for creative text; $0.60 /M input/output.",
    "input_price": 0.6,
    "output_price": 0.6,
    "model": "mistralai/mixtral-8x7b-instruct-v0.1"
  },
  "mixtral-8x7b-instruct-v0.1_think": {
    "feature": "mixtral-8\u00d77b-instruct-v0.1 \u2012 56 B MoE (8\u00d77 B) for creative text; $0.60 /M input/output.",
    "input_price": 0.6,
    "output_price": 0.6,
    "model": "mistralai/mixtral-8x7b-instruct-v0.1"
  },
  "deepseek-r1": {
    "feature": "deepseek-r1 \u2012 671 B-param reasoning powerhouse; Together charges $3 /M input tokens and $7 /M output tokens.",
    "input_price": 0.55,
    "output_price": 2.19,
    "model": "deepseek-ai/deepseek-r1"
  },
  "deepseek-r1_think": {
    "feature": "deepseek-r1 \u2012 671 B-param reasoning powerhouse; Together charges $3 /M input tokens and $7 /M output tokens.",
    "input_price": 0.55,
    "output_price": 2.19,
    "model": "deepseek-ai/deepseek-r1"
  },
  "mixtral-8x22b-instruct-v0.1": {
    "feature": "mixtral-8\u00d722b-instruct-v0.1 \u2012 176 B MoE (8\u00d722 B); $1.20 /M input and output.",
    "input_price": 1.2,
    "output_price": 1.2,
    "model": "mistralai/mixtral-8x22b-instruct-v0.1"
  },
  "mixtral-8x22b-instruct-v0.1_think": {
    "feature": "mixtral-8\u00d722b-instruct-v0.1 \u2012 176 B MoE (8\u00d722 B); $1.20 /M input and output.",
    "input_price": 1.2,
    "output_price": 1.2,
    "model": "mistralai/mixtral-8x22b-instruct-v0.1"
  },
  "palmyra-creative-122b": {
    "feature": "palmyra-creative-122b \u2012 122 B parameter model from Writer, optimized for creative and marketing content generation; $1.80 /M input and $1.80 /M output.",
    "input_price": 1.8,
    "output_price": 1.8,
    "model": "writer/palmyra-creative-122b"
  },
  "palmyra-creative-122b_think": {
    "feature": "palmyra-creative-122b \u2012 122 B parameter model from Writer, optimized for creative and marketing content generation; $1.80 /M input and $1.80 /M output.",
    "input_price": 1.8,
    "output_price": 1.8,
    "model": "writer/palmyra-creative-122b"
  }
}