Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files- app.py +271 -0
- requirements.txt +13 -0
app.py
ADDED
@@ -0,0 +1,271 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from langchain_core.messages import AIMessage, HumanMessage
|
3 |
+
from langchain_openai import ChatOpenAI
|
4 |
+
from langchain_core.output_parsers import StrOutputParser
|
5 |
+
from langchain_core.prompts import ChatPromptTemplate
|
6 |
+
from PyPDF2 import PdfReader
|
7 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
8 |
+
from langchain_google_genai import GoogleGenerativeAIEmbeddings
|
9 |
+
from langchain_community.vectorstores import FAISS
|
10 |
+
from tavily import TavilyClient
|
11 |
+
from streamlit_pdf_viewer import pdf_viewer
|
12 |
+
import hashlib
|
13 |
+
import io
|
14 |
+
import os
|
15 |
+
import pickle
|
16 |
+
import tempfile
|
17 |
+
from google.oauth2.credentials import Credentials
|
18 |
+
from google_auth_oauthlib.flow import InstalledAppFlow
|
19 |
+
from googleapiclient.discovery import build
|
20 |
+
from googleapiclient.http import MediaFileUpload
|
21 |
+
import getpass
|
22 |
+
|
23 |
+
# Initialize API keys
|
24 |
+
google_api_key = 'AIzaSyDiZjRdBVZNqmhCQHnqDjz_fjgdfARyZp4'
|
25 |
+
tvly_api_key = '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'
|
26 |
+
openai_api_key = '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'
|
27 |
+
|
28 |
+
# Validate API keys
|
29 |
+
if not all([google_api_key, tvly_api_key, openai_api_key]):
|
30 |
+
st.error("Please set up your API keys.")
|
31 |
+
st.stop()
|
32 |
+
|
33 |
+
# Initialize Tavily client
|
34 |
+
web_tool_search = TavilyClient(api_key=tvly_api_key)
|
35 |
+
|
36 |
+
# Set up Streamlit page
|
37 |
+
st.set_page_config(page_title="AI Professor", page_icon="👨🏫")
|
38 |
+
st.title("👨🏫 AI Professor")
|
39 |
+
|
40 |
+
# Authentication function for Google Drive
|
41 |
+
SCOPES = ['https://www.googleapis.com/auth/drive.file']
|
42 |
+
def authenticate_google_drive():
|
43 |
+
creds = None
|
44 |
+
if os.path.exists('token.pickle'):
|
45 |
+
with open('token.pickle', 'rb') as token:
|
46 |
+
creds = pickle.load(token)
|
47 |
+
|
48 |
+
if not creds or not creds.valid:
|
49 |
+
if creds and creds.expired and creds.refresh_token:
|
50 |
+
creds.refresh(Request())
|
51 |
+
else:
|
52 |
+
flow = InstalledAppFlow.from_client_secrets_file(
|
53 |
+
'credentials.json', SCOPES)
|
54 |
+
creds = flow.run_local_server(port=0)
|
55 |
+
with open('token.pickle', 'wb') as token:
|
56 |
+
pickle.dump(creds, token)
|
57 |
+
|
58 |
+
return build('drive', 'v3', credentials=creds)
|
59 |
+
|
60 |
+
def upload_to_drive(content, filename="conversation.txt"):
|
61 |
+
service = authenticate_google_drive()
|
62 |
+
file_metadata = {'name': filename}
|
63 |
+
media = MediaFileUpload(filename, mimetype='text/plain')
|
64 |
+
|
65 |
+
with open(filename, 'w') as f:
|
66 |
+
f.write(content)
|
67 |
+
|
68 |
+
file = service.files().create(body=file_metadata, media_body=media, fields='id').execute()
|
69 |
+
st.success(f"Conversation uploaded to Google Drive! File ID: {file.get('id')}")
|
70 |
+
return file.get('id')
|
71 |
+
|
72 |
+
# Simple login system
|
73 |
+
def login():
|
74 |
+
username = st.text_input("Username", "")
|
75 |
+
password = st.text_input("Password", "", type="password")
|
76 |
+
|
77 |
+
if st.button("Login"):
|
78 |
+
if username == "admin" and password == "password123":
|
79 |
+
st.session_state.logged_in = True
|
80 |
+
st.success("Login successful!")
|
81 |
+
else:
|
82 |
+
st.session_state.logged_in = False
|
83 |
+
st.error("Invalid credentials. Please try again.")
|
84 |
+
|
85 |
+
# Initialize session state variables
|
86 |
+
if "logged_in" not in st.session_state:
|
87 |
+
st.session_state.logged_in = False
|
88 |
+
|
89 |
+
if not st.session_state.logged_in:
|
90 |
+
login()
|
91 |
+
|
92 |
+
def get_pdf_text(pdf_docs):
|
93 |
+
text = ""
|
94 |
+
if isinstance(pdf_docs, list):
|
95 |
+
for pdf in pdf_docs:
|
96 |
+
pdf_reader = PdfReader(pdf)
|
97 |
+
for page in pdf_reader.pages:
|
98 |
+
text += page.extract_text()
|
99 |
+
else:
|
100 |
+
pdf_reader = PdfReader(pdf_docs)
|
101 |
+
for page in pdf_reader.pages:
|
102 |
+
text += page.extract_text()
|
103 |
+
return text
|
104 |
+
|
105 |
+
def get_text_chunks(text):
|
106 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=10000, chunk_overlap=1000)
|
107 |
+
chunks = text_splitter.split_text(text)
|
108 |
+
return chunks
|
109 |
+
|
110 |
+
def get_vector_store(text_chunks):
|
111 |
+
try:
|
112 |
+
embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001", google_api_key=google_api_key)
|
113 |
+
vector_store = FAISS.from_texts(text_chunks, embedding=embeddings)
|
114 |
+
return vector_store
|
115 |
+
except Exception as e:
|
116 |
+
st.error(f"Error creating vector store: {str(e)}")
|
117 |
+
return None
|
118 |
+
|
119 |
+
def get_response(user_query, chat_history, vector_store):
|
120 |
+
if vector_store is None:
|
121 |
+
return "Please upload a PDF document first."
|
122 |
+
|
123 |
+
template = """
|
124 |
+
You are a helpful assistant. Answer the following questions considering the history of the conversation and the document provided:
|
125 |
+
|
126 |
+
Context: {context}
|
127 |
+
Chat history: {chat_history}
|
128 |
+
User question: {user_question}
|
129 |
+
"""
|
130 |
+
|
131 |
+
prompt = ChatPromptTemplate.from_template(template)
|
132 |
+
|
133 |
+
try:
|
134 |
+
llm = ChatOpenAI(
|
135 |
+
base_url="https://api.groq.com/openai/v1",
|
136 |
+
api_key=openai_api_key,
|
137 |
+
model_name="gpt-4o-mini",
|
138 |
+
temperature=1,
|
139 |
+
max_tokens=1024
|
140 |
+
)
|
141 |
+
|
142 |
+
docs = vector_store.similarity_search(user_query)
|
143 |
+
context = "\n".join(doc.page_content for doc in docs)
|
144 |
+
|
145 |
+
chain = prompt | llm | StrOutputParser()
|
146 |
+
|
147 |
+
return chain.invoke({
|
148 |
+
"context": context,
|
149 |
+
"chat_history": chat_history,
|
150 |
+
"user_question": user_query,
|
151 |
+
})
|
152 |
+
except Exception as e:
|
153 |
+
return f"Error generating response: {str(e)}"
|
154 |
+
|
155 |
+
def get_youtube_url(query):
|
156 |
+
try:
|
157 |
+
response = web_tool_search.search(
|
158 |
+
query=query,
|
159 |
+
search_depth="basic",
|
160 |
+
include_domains=["youtube.com"],
|
161 |
+
max_results=1
|
162 |
+
)
|
163 |
+
|
164 |
+
for result in response['results']:
|
165 |
+
if 'youtube.com/watch' in result['url']:
|
166 |
+
return result['url']
|
167 |
+
|
168 |
+
return None
|
169 |
+
except Exception as e:
|
170 |
+
st.error(f"Error searching for video: {str(e)}")
|
171 |
+
return None
|
172 |
+
|
173 |
+
def get_pdfs_hash(pdf_docs):
|
174 |
+
combined_hash = hashlib.md5()
|
175 |
+
if isinstance(pdf_docs, list):
|
176 |
+
for pdf in pdf_docs:
|
177 |
+
content = pdf.read()
|
178 |
+
combined_hash.update(content)
|
179 |
+
pdf.seek(0)
|
180 |
+
else:
|
181 |
+
content = pdf_docs.read()
|
182 |
+
combined_hash.update(content)
|
183 |
+
pdf_docs.seek(0)
|
184 |
+
return combined_hash.hexdigest()
|
185 |
+
|
186 |
+
|
187 |
+
# If logged in, continue with the chatbot functionality
|
188 |
+
if st.session_state.logged_in:
|
189 |
+
# Initialize session state variables
|
190 |
+
if "chat_history" not in st.session_state:
|
191 |
+
st.session_state.chat_history = [
|
192 |
+
AIMessage(content="Hello, I am Chatbot professor assistant. How can I help you?")
|
193 |
+
]
|
194 |
+
if "vector_store" not in st.session_state:
|
195 |
+
st.session_state.vector_store = None
|
196 |
+
|
197 |
+
# Sidebar for PDF upload and settings
|
198 |
+
with st.sidebar:
|
199 |
+
st.title("Menu:")
|
200 |
+
pdf_docs = st.file_uploader("Upload your PDF Files", accept_multiple_files=False)
|
201 |
+
quiz_button = st.button("🗒️ Make a quiz")
|
202 |
+
video_button = st.button("📺 Search a video")
|
203 |
+
view = st.toggle("👁️ View PDF")
|
204 |
+
|
205 |
+
if view and pdf_docs:
|
206 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as temp_file:
|
207 |
+
temp_file.write(pdf_docs.read())
|
208 |
+
temp_pdf_path = temp_file.name
|
209 |
+
pdf_viewer(temp_pdf_path, width=800)
|
210 |
+
|
211 |
+
# Display chat history
|
212 |
+
for message in st.session_state.chat_history:
|
213 |
+
if isinstance(message, AIMessage):
|
214 |
+
with st.chat_message("AI"):
|
215 |
+
st.write(message.content)
|
216 |
+
elif isinstance(message, HumanMessage):
|
217 |
+
with st.chat_message("Human"):
|
218 |
+
st.write(message.content)
|
219 |
+
|
220 |
+
# Process PDF upload
|
221 |
+
if pdf_docs:
|
222 |
+
# Convert PDF to text and split into chunks for embedding
|
223 |
+
text = get_pdf_text(pdf_docs)
|
224 |
+
text_chunks = get_text_chunks(text)
|
225 |
+
st.session_state.vector_store = get_vector_store(text_chunks)
|
226 |
+
st.success("Document uploaded and ready for conversation.")
|
227 |
+
|
228 |
+
# Process user query
|
229 |
+
user_query = st.chat_input("Type your message here...")
|
230 |
+
if user_query:
|
231 |
+
st.session_state.chat_history.append(HumanMessage(content=user_query))
|
232 |
+
with st.chat_message("Human"):
|
233 |
+
st.write(user_query)
|
234 |
+
|
235 |
+
response = get_response(user_query, st.session_state.chat_history, st.session_state.vector_store)
|
236 |
+
st.session_state.chat_history.append(AIMessage(content=response))
|
237 |
+
with st.chat_message("AI"):
|
238 |
+
st.write(response)
|
239 |
+
|
240 |
+
# Upload conversation to Google Drive
|
241 |
+
# upload_to_drive("".join([msg.content for msg in st.session_state.chat_history]), "chat_conversation.txt")
|
242 |
+
|
243 |
+
# Handle quiz generation
|
244 |
+
if quiz_button:
|
245 |
+
with st.spinner("Generating quiz..."):
|
246 |
+
quiz_prompt = """
|
247 |
+
Based on the document content, create a quiz with 5 multiple choice questions.
|
248 |
+
Format each question like this:
|
249 |
+
Question X:
|
250 |
+
**A)** Answer 1
|
251 |
+
**B)** Answer 2
|
252 |
+
**C)** Answer 3
|
253 |
+
**D)** Answer 4
|
254 |
+
"""
|
255 |
+
response = get_response(quiz_prompt, st.session_state.chat_history, st.session_state.vector_store)
|
256 |
+
st.write(response)
|
257 |
+
st.session_state.chat_history.append(AIMessage(content=response))
|
258 |
+
|
259 |
+
# Handle video search
|
260 |
+
if video_button:
|
261 |
+
with st.spinner("Searching for relevant video..."):
|
262 |
+
video_prompt = """
|
263 |
+
Extract the main topic and key concepts from the document and the last conversation.
|
264 |
+
"""
|
265 |
+
response = get_response(video_prompt, st.session_state.chat_history, st.session_state.vector_store)
|
266 |
+
youtube_url = get_youtube_url(f"Course on {response}")
|
267 |
+
if youtube_url:
|
268 |
+
st.write(f"📺 Here's a video about {response}: {youtube_url}")
|
269 |
+
st.video(youtube_url)
|
270 |
+
video_message = f"📺 Here's a video about {response}:\n{youtube_url}"
|
271 |
+
st.session_state.chat_history.append(AIMessage(content=video_message))
|
requirements.txt
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
langchain_core
|
3 |
+
langchain_openai
|
4 |
+
langchain_google_genai
|
5 |
+
langchain_community
|
6 |
+
PyPDF2
|
7 |
+
faiss-cpu
|
8 |
+
tavily-python
|
9 |
+
streamlit-pdf-viewer
|
10 |
+
google-auth
|
11 |
+
google-auth-oauthlib
|
12 |
+
google-auth-httplib2
|
13 |
+
google-api-python-client
|