Spaces:
Sleeping
Sleeping
Commit
·
98a1feb
1
Parent(s):
ae13cd7
chore: Add top 75 PCA mode to image reconstruction interface
Browse files- app.py +74 -8
- model/top_75/vit-t-mae-pretrain.pt +3 -0
app.py
CHANGED
|
@@ -12,6 +12,7 @@ from model import MAE_ViT, MAE_Encoder, MAE_Decoder, MAE_Encoder_FeatureExtracto
|
|
| 12 |
|
| 13 |
path_1 = [['images/cat.jpg'], ['images/dog.jpg'], ['images/horse.jpg'], ['images/airplane.jpg'], ['images/truck.jpg']]
|
| 14 |
path_2 = [['images/cat.jpg'], ['images/dog.jpg'], ['images/horse.jpg'], ['images/airplane.jpg'], ['images/truck.jpg']]
|
|
|
|
| 15 |
device = torch.device("cpu")
|
| 16 |
|
| 17 |
model_name = "model/no_mode/vit-t-mae-pretrain.pt"
|
|
@@ -20,9 +21,14 @@ model_no_mode.eval()
|
|
| 20 |
model_no_mode.to(device)
|
| 21 |
|
| 22 |
model_name = "model/bottom_25/vit-t-mae-pretrain.pt"
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
|
| 27 |
transform = v2.Compose([
|
| 28 |
v2.Resize((96, 96)),
|
|
@@ -87,12 +93,54 @@ def visualize_single_image_no_mode(image_path):
|
|
| 87 |
|
| 88 |
return np.array(plt.imread("output.png"))
|
| 89 |
|
| 90 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
img = load_image(image_path, transform).to(device)
|
| 92 |
|
| 93 |
# Run inference
|
| 94 |
with torch.no_grad():
|
| 95 |
-
predicted_img, mask =
|
| 96 |
|
| 97 |
# Convert the tensor back to a displayable image
|
| 98 |
# masked image
|
|
@@ -145,6 +193,15 @@ outputs_image_2 = [
|
|
| 145 |
gr.components.Image(type="numpy", label="Output Image"),
|
| 146 |
]
|
| 147 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 148 |
inference_no_mode = gr.Interface(
|
| 149 |
fn=visualize_single_image_no_mode,
|
| 150 |
inputs=inputs_image_1,
|
|
@@ -155,8 +212,8 @@ inference_no_mode = gr.Interface(
|
|
| 155 |
description="This is a demo of the MAE-ViT model for image reconstruction.",
|
| 156 |
)
|
| 157 |
|
| 158 |
-
|
| 159 |
-
fn=
|
| 160 |
inputs=inputs_image_2,
|
| 161 |
outputs=outputs_image_2,
|
| 162 |
examples=path_2,
|
|
@@ -164,7 +221,16 @@ inference_pca_mode = gr.Interface(
|
|
| 164 |
description="This is a demo of the MAE-ViT model for image reconstruction.",
|
| 165 |
)
|
| 166 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 167 |
gr.TabbedInterface(
|
| 168 |
-
[inference_no_mode,
|
| 169 |
tab_names=['Normal Mode', 'PCA Mode']
|
| 170 |
).queue().launch()
|
|
|
|
| 12 |
|
| 13 |
path_1 = [['images/cat.jpg'], ['images/dog.jpg'], ['images/horse.jpg'], ['images/airplane.jpg'], ['images/truck.jpg']]
|
| 14 |
path_2 = [['images/cat.jpg'], ['images/dog.jpg'], ['images/horse.jpg'], ['images/airplane.jpg'], ['images/truck.jpg']]
|
| 15 |
+
path_3 = [['images/cat.jpg'], ['images/dog.jpg'], ['images/horse.jpg'], ['images/airplane.jpg'], ['images/truck.jpg']]
|
| 16 |
device = torch.device("cpu")
|
| 17 |
|
| 18 |
model_name = "model/no_mode/vit-t-mae-pretrain.pt"
|
|
|
|
| 21 |
model_no_mode.to(device)
|
| 22 |
|
| 23 |
model_name = "model/bottom_25/vit-t-mae-pretrain.pt"
|
| 24 |
+
model_pca_mode_bottom = torch.load(model_name, map_location='cpu')
|
| 25 |
+
model_pca_mode_bottom.eval()
|
| 26 |
+
model_pca_mode_bottom.to(device)
|
| 27 |
+
|
| 28 |
+
model_name = "model/top_75/vit-t-mae-pretrain.pt"
|
| 29 |
+
model_pca_mode_top = torch.load(model_name, map_location='cpu')
|
| 30 |
+
model_pca_mode_top.eval()
|
| 31 |
+
model_pca_mode_top.to(device)
|
| 32 |
|
| 33 |
transform = v2.Compose([
|
| 34 |
v2.Resize((96, 96)),
|
|
|
|
| 93 |
|
| 94 |
return np.array(plt.imread("output.png"))
|
| 95 |
|
| 96 |
+
def visualize_single_image_pca_mode_bottom(image_path):
|
| 97 |
+
img = load_image(image_path, transform).to(device)
|
| 98 |
+
|
| 99 |
+
# Run inference
|
| 100 |
+
with torch.no_grad():
|
| 101 |
+
predicted_img, mask = model_pca_mode_bottom(img)
|
| 102 |
+
|
| 103 |
+
# Convert the tensor back to a displayable image
|
| 104 |
+
# masked image
|
| 105 |
+
im_masked = img * (1 - mask)
|
| 106 |
+
|
| 107 |
+
# MAE reconstruction pasted with visible patches
|
| 108 |
+
im_paste = img * (1 - mask) + predicted_img * mask
|
| 109 |
+
|
| 110 |
+
# remove the batch dimension
|
| 111 |
+
img = img[0]
|
| 112 |
+
im_masked = im_masked[0]
|
| 113 |
+
predicted_img = predicted_img[0]
|
| 114 |
+
im_paste = im_paste[0]
|
| 115 |
+
|
| 116 |
+
# make the plt figure larger
|
| 117 |
+
plt.figure(figsize=(18, 8))
|
| 118 |
+
|
| 119 |
+
plt.subplot(1, 4, 1)
|
| 120 |
+
show_image(img, "original")
|
| 121 |
+
|
| 122 |
+
plt.subplot(1, 4, 2)
|
| 123 |
+
show_image(im_masked, "masked")
|
| 124 |
+
|
| 125 |
+
plt.subplot(1, 4, 3)
|
| 126 |
+
show_image(predicted_img, "reconstruction")
|
| 127 |
+
|
| 128 |
+
plt.subplot(1, 4, 4)
|
| 129 |
+
show_image(im_paste, "reconstruction + visible")
|
| 130 |
+
|
| 131 |
+
plt.tight_layout()
|
| 132 |
+
|
| 133 |
+
# convert the plt figure to a numpy array
|
| 134 |
+
plt.savefig("output.png")
|
| 135 |
+
|
| 136 |
+
return np.array(plt.imread("output.png"))
|
| 137 |
+
|
| 138 |
+
def visualize_single_image_pca_mode_top(image_path):
|
| 139 |
img = load_image(image_path, transform).to(device)
|
| 140 |
|
| 141 |
# Run inference
|
| 142 |
with torch.no_grad():
|
| 143 |
+
predicted_img, mask = model_pca_mode_top(img)
|
| 144 |
|
| 145 |
# Convert the tensor back to a displayable image
|
| 146 |
# masked image
|
|
|
|
| 193 |
gr.components.Image(type="numpy", label="Output Image"),
|
| 194 |
]
|
| 195 |
|
| 196 |
+
inputs_image_3 = [
|
| 197 |
+
gr.components.Image(type="filepath", label="Input Image"),
|
| 198 |
+
]
|
| 199 |
+
|
| 200 |
+
outputs_image_3 = [
|
| 201 |
+
gr.components.Image(type="numpy", label="Output Image"),
|
| 202 |
+
]
|
| 203 |
+
|
| 204 |
+
|
| 205 |
inference_no_mode = gr.Interface(
|
| 206 |
fn=visualize_single_image_no_mode,
|
| 207 |
inputs=inputs_image_1,
|
|
|
|
| 212 |
description="This is a demo of the MAE-ViT model for image reconstruction.",
|
| 213 |
)
|
| 214 |
|
| 215 |
+
inference_pca_mode_bottom = gr.Interface(
|
| 216 |
+
fn=visualize_single_image_pca_mode_bottom,
|
| 217 |
inputs=inputs_image_2,
|
| 218 |
outputs=outputs_image_2,
|
| 219 |
examples=path_2,
|
|
|
|
| 221 |
description="This is a demo of the MAE-ViT model for image reconstruction.",
|
| 222 |
)
|
| 223 |
|
| 224 |
+
inference_pca_mode_top = gr.Interface(
|
| 225 |
+
fn=visualize_single_image_pca_mode_top,
|
| 226 |
+
inputs=inputs_image_3,
|
| 227 |
+
outputs=outputs_image_3,
|
| 228 |
+
examples=path_3,
|
| 229 |
+
title="MAE-ViT Image Reconstruction",
|
| 230 |
+
description="This is a demo of the MAE-ViT model for image reconstruction.",
|
| 231 |
+
)
|
| 232 |
+
|
| 233 |
gr.TabbedInterface(
|
| 234 |
+
[inference_no_mode, inference_pca_mode_bottom, inference_pca_mode_top],
|
| 235 |
tab_names=['Normal Mode', 'PCA Mode']
|
| 236 |
).queue().launch()
|
model/top_75/vit-t-mae-pretrain.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1ecb391af126dc7ba24e85043e4a383782ed3e642977dcf8ad68c835891752ae
|
| 3 |
+
size 29121704
|