Spaces:
Sleeping
Sleeping
Commit
·
774a99f
1
Parent(s):
def8bfd
bottom 25 model added to visualize in seperate tab
Browse files
app.py
CHANGED
|
@@ -11,12 +11,17 @@ from torchvision.transforms import v2
|
|
| 11 |
from model import MAE_ViT, MAE_Encoder, MAE_Decoder, MAE_Encoder_FeatureExtractor
|
| 12 |
|
| 13 |
path = [['images/cat.jpg'], ['images/dog.jpg'], ['images/horse.jpg'], ['images/airplane.jpg'], ['images/truck.jpg']]
|
| 14 |
-
model_name = "vit-t-mae-pretrain.pt"
|
| 15 |
-
model = torch.load(model_name, map_location='cpu')
|
| 16 |
-
|
| 17 |
-
model.eval()
|
| 18 |
device = torch.device("cpu")
|
| 19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
transform = v2.Compose([
|
| 22 |
v2.Resize((32, 32)),
|
|
@@ -39,13 +44,12 @@ def show_image(img, title):
|
|
| 39 |
plt.title(title)
|
| 40 |
|
| 41 |
# Visualize a Single Image
|
| 42 |
-
def
|
| 43 |
img = load_image(image_path, transform).to(device)
|
| 44 |
|
| 45 |
# Run inference
|
| 46 |
-
model.eval()
|
| 47 |
with torch.no_grad():
|
| 48 |
-
predicted_img, mask =
|
| 49 |
|
| 50 |
# Convert the tensor back to a displayable image
|
| 51 |
# masked image
|
|
@@ -82,6 +86,47 @@ def visualize_single_image(image_path):
|
|
| 82 |
|
| 83 |
return np.array(plt.imread("output.png"))
|
| 84 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 85 |
inputs_image = [
|
| 86 |
gr.components.Image(type="filepath", label="Input Image"),
|
| 87 |
]
|
|
@@ -90,11 +135,26 @@ outputs_image = [
|
|
| 90 |
gr.components.Image(type="numpy", label="Output Image"),
|
| 91 |
]
|
| 92 |
|
| 93 |
-
gr.Interface(
|
| 94 |
-
fn=
|
| 95 |
inputs=inputs_image,
|
| 96 |
outputs=outputs_image,
|
| 97 |
examples=path,
|
|
|
|
| 98 |
title="MAE-ViT Image Reconstruction",
|
| 99 |
description="This is a demo of the MAE-ViT model for image reconstruction.",
|
| 100 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
from model import MAE_ViT, MAE_Encoder, MAE_Decoder, MAE_Encoder_FeatureExtractor
|
| 12 |
|
| 13 |
path = [['images/cat.jpg'], ['images/dog.jpg'], ['images/horse.jpg'], ['images/airplane.jpg'], ['images/truck.jpg']]
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
device = torch.device("cpu")
|
| 15 |
+
|
| 16 |
+
model_name = "model/no_mode/vit-t-mae-pretrain.pt"
|
| 17 |
+
model_no_mode = torch.load(model_name, map_location='cpu')
|
| 18 |
+
model_no_mode.eval()
|
| 19 |
+
model_no_mode.to(device)
|
| 20 |
+
|
| 21 |
+
model_name = "model/bottom_256/vit-t-mae-pretrain.pt"
|
| 22 |
+
model_pca_mode = torch.load(model_name, map_location='cpu')
|
| 23 |
+
model_pca_mode.eval()
|
| 24 |
+
model_pca_mode.to(device)
|
| 25 |
|
| 26 |
transform = v2.Compose([
|
| 27 |
v2.Resize((32, 32)),
|
|
|
|
| 44 |
plt.title(title)
|
| 45 |
|
| 46 |
# Visualize a Single Image
|
| 47 |
+
def visualize_single_image_no_mode(image_path):
|
| 48 |
img = load_image(image_path, transform).to(device)
|
| 49 |
|
| 50 |
# Run inference
|
|
|
|
| 51 |
with torch.no_grad():
|
| 52 |
+
predicted_img, mask = model_no_mode(img)
|
| 53 |
|
| 54 |
# Convert the tensor back to a displayable image
|
| 55 |
# masked image
|
|
|
|
| 86 |
|
| 87 |
return np.array(plt.imread("output.png"))
|
| 88 |
|
| 89 |
+
def visualize_single_image_pca_mode(image_path):
|
| 90 |
+
img = load_image(image_path, transform).to(device)
|
| 91 |
+
|
| 92 |
+
# Run inference
|
| 93 |
+
with torch.no_grad():
|
| 94 |
+
predicted_img, mask = model_pca_mode(img)
|
| 95 |
+
|
| 96 |
+
# Convert the tensor back to a displayable image
|
| 97 |
+
# masked image
|
| 98 |
+
im_masked = img * (1 - mask)
|
| 99 |
+
|
| 100 |
+
# MAE reconstruction pasted with visible patches
|
| 101 |
+
im_paste = img * (1 - mask) + predicted_img * mask
|
| 102 |
+
|
| 103 |
+
# remove the batch dimension
|
| 104 |
+
im_masked = im_masked[0]
|
| 105 |
+
predicted_img = predicted_img[0]
|
| 106 |
+
im_paste = im_paste[0]
|
| 107 |
+
|
| 108 |
+
# make the plt figure larger
|
| 109 |
+
plt.figure(figsize=(18, 8))
|
| 110 |
+
|
| 111 |
+
plt.subplot(1, 4, 1)
|
| 112 |
+
show_image(img, "original")
|
| 113 |
+
|
| 114 |
+
plt.subplot(1, 4, 2)
|
| 115 |
+
show_image(im_masked, "masked")
|
| 116 |
+
|
| 117 |
+
plt.subplot(1, 4, 3)
|
| 118 |
+
show_image(predicted_img, "reconstruction")
|
| 119 |
+
|
| 120 |
+
plt.subplot(1, 4, 4)
|
| 121 |
+
show_image(im_paste, "reconstruction + visible")
|
| 122 |
+
|
| 123 |
+
plt.tight_layout()
|
| 124 |
+
|
| 125 |
+
# convert the plt figure to a numpy array
|
| 126 |
+
plt.savefig("output.png")
|
| 127 |
+
|
| 128 |
+
return np.array(plt.imread("output.png"))
|
| 129 |
+
|
| 130 |
inputs_image = [
|
| 131 |
gr.components.Image(type="filepath", label="Input Image"),
|
| 132 |
]
|
|
|
|
| 135 |
gr.components.Image(type="numpy", label="Output Image"),
|
| 136 |
]
|
| 137 |
|
| 138 |
+
inference_no_mode = gr.Interface(
|
| 139 |
+
fn=visualize_single_image_no_mode,
|
| 140 |
inputs=inputs_image,
|
| 141 |
outputs=outputs_image,
|
| 142 |
examples=path,
|
| 143 |
+
cache_examples = False,
|
| 144 |
title="MAE-ViT Image Reconstruction",
|
| 145 |
description="This is a demo of the MAE-ViT model for image reconstruction.",
|
| 146 |
+
)
|
| 147 |
+
|
| 148 |
+
inference_pca_mode = gr.Interface(
|
| 149 |
+
fn=visualize_single_image_pca_mode,
|
| 150 |
+
inputs=inputs_image,
|
| 151 |
+
outputs=outputs_image,
|
| 152 |
+
examples=path,
|
| 153 |
+
title="MAE-ViT Image Reconstruction",
|
| 154 |
+
description="This is a demo of the MAE-ViT model for image reconstruction.",
|
| 155 |
+
)
|
| 156 |
+
|
| 157 |
+
gr.TabbedInterface(
|
| 158 |
+
[inference_no_mode, inference_pca_mode],
|
| 159 |
+
tab_names=['Normal Mode', 'PCA Mode']
|
| 160 |
+
).queue().launch()
|
model/.DS_Store
ADDED
|
Binary file (6.15 kB). View file
|
|
|
model/bottom_25/vit-t-mae-pretrain.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e00a227576d93ed464e783ba281866b7441a37123c649a55e648d6e5553b66b0
|
| 3 |
+
size 28973864
|
vit-t-mae-pretrain.pt → model/no_mode/vit-t-mae-pretrain.pt
RENAMED
|
File without changes
|