Spaces:
Running
Running
update App
Browse files- .gitignore +5 -0
- app.py +115 -84
.gitignore
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.pt
|
2 |
+
*.pth
|
3 |
+
*.bin
|
4 |
+
*.onnx
|
5 |
+
*.param
|
app.py
CHANGED
@@ -8,89 +8,40 @@ from spandrel import ImageModelDescriptor, ModelLoader
|
|
8 |
import torch
|
9 |
import subprocess
|
10 |
|
|
|
|
|
11 |
|
12 |
# 新增日志开关
|
13 |
log_to_terminal = True
|
14 |
|
|
|
|
|
|
|
15 |
# 新增日志函数
|
16 |
def print_log(task_id, filename, stage, status):
|
17 |
if log_to_terminal:
|
18 |
print(f"任务 ID: {task_id}, 文件名: {filename}, 状态: [{status}], 阶段: {stage}")
|
19 |
|
20 |
-
# 修改
|
21 |
-
def
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
# 修改此处,去除 shape 字符串中的空格
|
31 |
-
command = f"pnnx {pt_path} inputshape={str(shape0).replace(' ', '')} inputshape2={str(shape1).replace(' ', '')}"
|
32 |
-
elif input_tensor0 is not None:
|
33 |
-
example_input = input_tensor0
|
34 |
-
command = f"pnnx {pt_path} inputshape={str(shape0).replace(' ', '')}"
|
35 |
-
else:
|
36 |
-
example_input = input_tensor1
|
37 |
-
command = f"pnnx {pt_path}"
|
38 |
-
print_log(task_id, model_name, "生成输入张量", "完成")
|
39 |
-
|
40 |
-
# 确保 output_folder 存在
|
41 |
-
if not os.path.exists(output_folder):
|
42 |
-
os.makedirs(output_folder)
|
43 |
-
|
44 |
-
# load a model from disk
|
45 |
-
model = ModelLoader().load_from_file(file_path)
|
46 |
-
|
47 |
-
# make sure it's an image to image model
|
48 |
-
assert isinstance(model, ImageModelDescriptor)
|
49 |
-
|
50 |
-
print_log(task_id, model_name, "加载模型", "完成")
|
51 |
-
# send it to the GPU and put it in inference mode
|
52 |
-
# model.cuda().eval()
|
53 |
-
model.eval()
|
54 |
-
torch_model = model.model
|
55 |
-
print_log(task_id, model_name, "获得模型对象", "完成")
|
56 |
-
if os.path.exists(pt_path):
|
57 |
-
print_log(task_id, model_name, "转换为TorchScript模型", "跳过")
|
58 |
-
else:
|
59 |
-
print_log(task_id, model_name, "转换为TorchScript模型", "开始")
|
60 |
-
# 使用 torch.jit.trace 进行模型转换
|
61 |
-
traced_torch_model = torch.jit.trace(torch_model, example_input)
|
62 |
-
traced_torch_model.save(output_folder + "/" + model_name + ".pt")
|
63 |
-
print_log(task_id, model_name, "转换为TorchScript模型", "完成")
|
64 |
-
|
65 |
-
print_log(task_id, model_name, "运行命令"+command, "开始")
|
66 |
-
|
67 |
-
try:
|
68 |
-
# 使用 subprocess.Popen 执行命令
|
69 |
-
process = subprocess.Popen(command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, text=True)
|
70 |
-
while True:
|
71 |
-
output = process.stdout.readline()
|
72 |
-
if output == '' and process.poll() is not None:
|
73 |
-
break
|
74 |
-
if output:
|
75 |
-
log += output.strip() + '\n'
|
76 |
-
if log_to_terminal:
|
77 |
-
print(output.strip())
|
78 |
-
returncode = process.poll()
|
79 |
-
if returncode != 0:
|
80 |
-
log += f"执行命令: {command} 失败,返回码: {returncode}\n"
|
81 |
else:
|
82 |
-
|
83 |
-
except Exception as e:
|
84 |
-
log += f"执行命令: {command} 失败,错误信息: {str(e)}\n"
|
85 |
|
86 |
-
|
|
|
|
|
|
|
|
|
|
|
87 |
|
88 |
-
# 修改为字典类型
|
89 |
-
downloaded_files = {}
|
90 |
-
# 修改 start_process 函数,处理新增输入
|
91 |
-
def start_process(input1, input2, shape0_str, shape1_str, input_suffix=".pth"):
|
92 |
-
task_id = str(uuid.uuid4())
|
93 |
-
log = ""
|
94 |
try:
|
95 |
# 判断 input1 是地址还是文件,增加对 ftp 和 webdav 协议的支持
|
96 |
supported_protocols = ('http://', 'https://', 'ftp://', 'webdav://')
|
@@ -98,10 +49,13 @@ def start_process(input1, input2, shape0_str, shape1_str, input_suffix=".pth"):
|
|
98 |
url = input1
|
99 |
if url in downloaded_files and os.path.exists(downloaded_files[url]):
|
100 |
file_path = downloaded_files[url]
|
101 |
-
log += f"跳过下载,文件已存在: {file_path}\n"
|
102 |
print_log(task_id, input2, "检查下载状态", "跳过下载")
|
|
|
103 |
yield [], log
|
104 |
else:
|
|
|
|
|
|
|
105 |
# 生成唯一文件名
|
106 |
file_name = str(uuid.uuid4()) + input_suffix
|
107 |
file_path = os.path.join(os.getcwd(), file_name)
|
@@ -117,27 +71,29 @@ def start_process(input1, input2, shape0_str, shape1_str, input_suffix=".pth"):
|
|
117 |
ftp.retrbinary('RETR ' + remote_file_path, f.write)
|
118 |
ftp.quit()
|
119 |
downloaded_files[url] = file_path
|
|
|
120 |
log += f"文件下载成功: {file_path}\n"
|
121 |
yield [], log
|
122 |
except Exception as e:
|
123 |
-
log += f"FTP 文件下载失败: {str(e)}\n"
|
124 |
print_log(task_id, input2, "下载文件", f"失败 (FTP): {str(e)}")
|
|
|
125 |
yield [], log
|
126 |
return
|
127 |
-
else
|
128 |
if url.startswith(('http://', 'https://')):
|
129 |
response = requests.get(url)
|
130 |
if response.status_code == 200:
|
131 |
with open(file_path, 'wb') as f:
|
132 |
f.write(response.content)
|
133 |
downloaded_files[url] = file_path
|
|
|
134 |
log += f"文件下载成功: {file_path}\n"
|
135 |
yield [], log
|
136 |
else:
|
|
|
137 |
log += f"文件下载失败,状态码: {response.status_code}\n"
|
138 |
yield [], log
|
139 |
return
|
140 |
-
|
141 |
elif input1 is not None:
|
142 |
file_path = input1.name
|
143 |
log += f"使用上传的文件: {file_path}\n"
|
@@ -152,10 +108,9 @@ def start_process(input1, input2, shape0_str, shape1_str, input_suffix=".pth"):
|
|
152 |
# 生成新文件夹用于暂存结果
|
153 |
output_folder = os.path.join(os.getcwd(), str(uuid.uuid4()))
|
154 |
os.makedirs(output_folder, exist_ok=True)
|
155 |
-
log += f"创建临时文件夹: {output_folder}\n"
|
156 |
print_log(task_id, input2, "创建临时文件夹", "完成")
|
|
|
157 |
yield [], log
|
158 |
-
|
159 |
# 解析输入的字符串为数组
|
160 |
try:
|
161 |
# 尝试解析 shape0_str
|
@@ -176,18 +131,94 @@ def start_process(input1, input2, shape0_str, shape1_str, input_suffix=".pth"):
|
|
176 |
yield [], log
|
177 |
return
|
178 |
|
179 |
-
#
|
180 |
-
|
181 |
-
|
182 |
-
log +=
|
183 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
184 |
yield output_files, log
|
185 |
except Exception as e:
|
186 |
log += f"发生错误: {str(e)}\n"
|
187 |
-
print_log(task_id, input2,
|
188 |
yield [], log
|
189 |
|
190 |
-
|
191 |
# 创建 Gradio 界面
|
192 |
with gr.Blocks() as demo:
|
193 |
gr.Markdown("文件处理界面")
|
|
|
8 |
import torch
|
9 |
import subprocess
|
10 |
|
11 |
+
# 定义 downloaded_files 变量
|
12 |
+
downloaded_files = {}
|
13 |
|
14 |
# 新增日志开关
|
15 |
log_to_terminal = True
|
16 |
|
17 |
+
# 新增全局任务计数器
|
18 |
+
task_counter = 0
|
19 |
+
|
20 |
# 新增日志函数
|
21 |
def print_log(task_id, filename, stage, status):
|
22 |
if log_to_terminal:
|
23 |
print(f"任务 ID: {task_id}, 文件名: {filename}, 状态: [{status}], 阶段: {stage}")
|
24 |
|
25 |
+
# 修改 start_process 函数,处理新增输入
|
26 |
+
def start_process(input1, input2, shape0_str, shape1_str, input_suffix=".pth"):
|
27 |
+
global task_counter
|
28 |
+
task_counter += 1
|
29 |
+
task_id = task_counter
|
30 |
+
log = "转换过程非常慢,请耐心等待。显示文件列表不代表转换完成。如果未发生错误,转换结束会显示”任务完成“\n"
|
31 |
+
yield [], log
|
32 |
+
if input2 == None or input2.strip() == "":
|
33 |
+
if isinstance(input1, str):
|
34 |
+
input2 = os.path.splitext(os.path.basename(input1))[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
else:
|
36 |
+
input2 = os.path.splitext(os.path.basename(input1.name))[0]
|
|
|
|
|
37 |
|
38 |
+
if input2 == "":
|
39 |
+
input2 = str(task_id)
|
40 |
+
log += f"未提供文件名,使用{input2}\n"
|
41 |
+
print_log(task_id, input2, f"未提供文件名,使用{input2}", "修正")
|
42 |
+
yield [], log
|
43 |
+
input2 = "output"
|
44 |
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
try:
|
46 |
# 判断 input1 是地址还是文件,增加对 ftp 和 webdav 协议的支持
|
47 |
supported_protocols = ('http://', 'https://', 'ftp://', 'webdav://')
|
|
|
49 |
url = input1
|
50 |
if url in downloaded_files and os.path.exists(downloaded_files[url]):
|
51 |
file_path = downloaded_files[url]
|
|
|
52 |
print_log(task_id, input2, "检查下载状态", "跳过下载")
|
53 |
+
log += f"跳过下载,文件已存在: {file_path}\n"
|
54 |
yield [], log
|
55 |
else:
|
56 |
+
print_log(task_id, input2, "下载文件", "开始")
|
57 |
+
log += f"开始下载文件…\n"
|
58 |
+
yield [], log
|
59 |
# 生成唯一文件名
|
60 |
file_name = str(uuid.uuid4()) + input_suffix
|
61 |
file_path = os.path.join(os.getcwd(), file_name)
|
|
|
71 |
ftp.retrbinary('RETR ' + remote_file_path, f.write)
|
72 |
ftp.quit()
|
73 |
downloaded_files[url] = file_path
|
74 |
+
print_log(task_id, input2, "下载文件", "成功")
|
75 |
log += f"文件下载成功: {file_path}\n"
|
76 |
yield [], log
|
77 |
except Exception as e:
|
|
|
78 |
print_log(task_id, input2, "下载文件", f"失败 (FTP): {str(e)}")
|
79 |
+
log += f"FTP 文件下载失败: {str(e)}\n"
|
80 |
yield [], log
|
81 |
return
|
82 |
+
else:
|
83 |
if url.startswith(('http://', 'https://')):
|
84 |
response = requests.get(url)
|
85 |
if response.status_code == 200:
|
86 |
with open(file_path, 'wb') as f:
|
87 |
f.write(response.content)
|
88 |
downloaded_files[url] = file_path
|
89 |
+
print_log(task_id, input2, "下载文件", "成功")
|
90 |
log += f"文件下载成功: {file_path}\n"
|
91 |
yield [], log
|
92 |
else:
|
93 |
+
print_log(task_id, input2, f"下载文件(HTTP): {response.status_code}", "失败")
|
94 |
log += f"文件下载失败,状态码: {response.status_code}\n"
|
95 |
yield [], log
|
96 |
return
|
|
|
97 |
elif input1 is not None:
|
98 |
file_path = input1.name
|
99 |
log += f"使用上传的文件: {file_path}\n"
|
|
|
108 |
# 生成新文件夹用于暂存结果
|
109 |
output_folder = os.path.join(os.getcwd(), str(uuid.uuid4()))
|
110 |
os.makedirs(output_folder, exist_ok=True)
|
|
|
111 |
print_log(task_id, input2, "创建临时文件夹", "完成")
|
112 |
+
log += f"创建临时文件夹: {output_folder}\n生成张量\n"
|
113 |
yield [], log
|
|
|
114 |
# 解析输入的字符串为数组
|
115 |
try:
|
116 |
# 尝试解析 shape0_str
|
|
|
131 |
yield [], log
|
132 |
return
|
133 |
|
134 |
+
# 以下是 process_file 函数的代码
|
135 |
+
# 使用 torch.rand 生成 input_shape
|
136 |
+
print_log(task_id, input2, "生成输入张量", "开始")
|
137 |
+
log += "生成张量…\n"
|
138 |
+
yield [], log
|
139 |
+
pt_path = output_folder + "/" + input2 + ".pt"
|
140 |
+
input_tensor0 = torch.rand(shape0) if any(shape0) else None
|
141 |
+
input_tensor1 = torch.rand(shape1) if any(shape1) else None
|
142 |
+
if input_tensor0 is not None and input_tensor1 is not None:
|
143 |
+
example_input = (input_tensor0, input_tensor1)
|
144 |
+
# 修改此处,去除 shape 字符串中的空格
|
145 |
+
command = f"pnnx {pt_path} inputshape={str(shape0).replace(' ', '')} inputshape2={str(shape1).replace(' ', '')}"
|
146 |
+
elif input_tensor0 is not None:
|
147 |
+
example_input = input_tensor0
|
148 |
+
command = f"pnnx {pt_path} inputshape={str(shape0).replace(' ', '')}"
|
149 |
+
else:
|
150 |
+
example_input = input_tensor1
|
151 |
+
command = f"pnnx {pt_path}"
|
152 |
+
print_log(task_id, input2, "生成输入张量", "完成")
|
153 |
+
|
154 |
+
|
155 |
+
# 确保 output_folder 存在
|
156 |
+
if not os.path.exists(output_folder):
|
157 |
+
os.makedirs(output_folder)
|
158 |
+
|
159 |
+
print_log(task_id, input2, "加载模型", "开始")
|
160 |
+
log += "加载模型…\n"
|
161 |
+
yield [], log
|
162 |
+
# load a model from disk
|
163 |
+
model = ModelLoader().load_from_file(file_path)
|
164 |
+
|
165 |
+
# make sure it's an image to image model
|
166 |
+
assert isinstance(model, ImageModelDescriptor)
|
167 |
+
|
168 |
+
print_log(task_id, input2, "获得���型对象", "开始")
|
169 |
+
log += "获得模型对象…\n"
|
170 |
+
yield [], log
|
171 |
+
# send it to the GPU and put it in inference mode
|
172 |
+
# model.cuda().eval()
|
173 |
+
model.eval()
|
174 |
+
torch_model = model.model
|
175 |
+
print_log(task_id, input2, "获得模型对象", "完成")
|
176 |
+
yield [], log
|
177 |
+
if os.path.exists(pt_path):
|
178 |
+
print_log(task_id, input2, "转换为TorchScript模型", "跳过")
|
179 |
+
log += "跳过转换为TorchScript模型\n"
|
180 |
+
yield [], log
|
181 |
+
else:
|
182 |
+
print_log(task_id, input2, "转换为TorchScript模型", "开始")
|
183 |
+
log+= "转换为TorchScript模型…\n"
|
184 |
+
yield [], log
|
185 |
+
# 使用 torch.jit.trace 进行模型转换
|
186 |
+
traced_torch_model = torch.jit.trace(torch_model, example_input)
|
187 |
+
traced_torch_model.save(output_folder + "/" + input2 + ".pt")
|
188 |
+
print_log(task_id, input2, "转换为TorchScript模型", "完成")
|
189 |
+
|
190 |
+
print_log(task_id, input2, "执行命令" + command, "开始")
|
191 |
+
log += "执行命令…\n"
|
192 |
+
yield [], log
|
193 |
+
|
194 |
+
try:
|
195 |
+
# 使用 subprocess.Popen 执行命令
|
196 |
+
process = subprocess.Popen(command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, text=True)
|
197 |
+
while True:
|
198 |
+
output = process.stdout.readline()
|
199 |
+
if output == '' and process.poll() is not None:
|
200 |
+
break
|
201 |
+
if output:
|
202 |
+
log += output.strip() + '\n'
|
203 |
+
if log_to_terminal:
|
204 |
+
print(output.strip())
|
205 |
+
returncode = process.poll()
|
206 |
+
if returncode != 0:
|
207 |
+
log += f"执行命令: {command} 失败,返回码: {returncode}\n"
|
208 |
+
else:
|
209 |
+
log += f"执行命令: {command} 成功\n"
|
210 |
+
except Exception as e:
|
211 |
+
log += f"执行命令: {command} 失败,错误信息: {str(e)}\n"
|
212 |
+
|
213 |
+
output_files = [os.path.join(output_folder, f) for f in os.listdir(output_folder) if os.path.isfile(os.path.join(output_folder, f))]
|
214 |
+
log += f"任务完成,输出文件: {output_files}\n"
|
215 |
+
print_log(task_id, input2, "执行命令", "完成")
|
216 |
yield output_files, log
|
217 |
except Exception as e:
|
218 |
log += f"发生错误: {str(e)}\n"
|
219 |
+
print_log(task_id, input2,str(e) , f"失败")
|
220 |
yield [], log
|
221 |
|
|
|
222 |
# 创建 Gradio 界面
|
223 |
with gr.Blocks() as demo:
|
224 |
gr.Markdown("文件处理界面")
|