Spaces:
Running
Running
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,217 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import os
|
3 |
+
import requests
|
4 |
+
import shutil
|
5 |
+
import uuid
|
6 |
+
from ftplib import FTP
|
7 |
+
from spandrel import ImageModelDescriptor, ModelLoader
|
8 |
+
import torch
|
9 |
+
import subprocess
|
10 |
+
|
11 |
+
|
12 |
+
# 新增日志开关
|
13 |
+
log_to_terminal = True
|
14 |
+
|
15 |
+
# 新增日志函数
|
16 |
+
def print_log(task_id, filename, stage, status):
|
17 |
+
if log_to_terminal:
|
18 |
+
print(f"任务 ID: {task_id}, 文件名: {filename}, 状态: [{status}], 阶段: {stage}")
|
19 |
+
|
20 |
+
# 修改 process_file 函数,接收 shape 数组
|
21 |
+
def process_file(task_id, file_path, model_name, output_folder, shape0, shape1):
|
22 |
+
# 使用 torch.rand 生成 input_shape
|
23 |
+
log = ""
|
24 |
+
print_log(task_id, model_name, "生成输入张量", "开始")
|
25 |
+
pt_path = output_folder + "/" + model_name + ".pt"
|
26 |
+
input_tensor0 = torch.rand(shape0) if any(shape0) else None
|
27 |
+
input_tensor1 = torch.rand(shape1) if any(shape1) else None
|
28 |
+
if input_tensor0 is not None and input_tensor1 is not None:
|
29 |
+
example_input = (input_tensor0, input_tensor1)
|
30 |
+
# 修改此处,去除 shape 字符串中的空格
|
31 |
+
command = f"pnnx {pt_path} inputshape={str(shape0).replace(' ', '')} inputshape2={str(shape1).replace(' ', '')}"
|
32 |
+
elif input_tensor0 is not None:
|
33 |
+
example_input = input_tensor0
|
34 |
+
command = f"pnnx {pt_path} inputshape={str(shape0).replace(' ', '')}"
|
35 |
+
else:
|
36 |
+
example_input = input_tensor1
|
37 |
+
command = f"pnnx {pt_path}"
|
38 |
+
print_log(task_id, model_name, "生成输入张量", "完成")
|
39 |
+
|
40 |
+
# 确保 output_folder 存在
|
41 |
+
if not os.path.exists(output_folder):
|
42 |
+
os.makedirs(output_folder)
|
43 |
+
|
44 |
+
# load a model from disk
|
45 |
+
model = ModelLoader().load_from_file(file_path)
|
46 |
+
|
47 |
+
# make sure it's an image to image model
|
48 |
+
assert isinstance(model, ImageModelDescriptor)
|
49 |
+
|
50 |
+
print_log(task_id, model_name, "加载模型", "完成")
|
51 |
+
# send it to the GPU and put it in inference mode
|
52 |
+
# model.cuda().eval()
|
53 |
+
model.eval()
|
54 |
+
torch_model = model.model
|
55 |
+
print_log(task_id, model_name, "获得模型对象", "完成")
|
56 |
+
if os.path.exists(pt_path):
|
57 |
+
print_log(task_id, model_name, "转换为TorchScript模型", "跳过")
|
58 |
+
else:
|
59 |
+
print_log(task_id, model_name, "转换为TorchScript模型", "开始")
|
60 |
+
# 使用 torch.jit.trace 进行模型转换
|
61 |
+
traced_torch_model = torch.jit.trace(torch_model, example_input)
|
62 |
+
traced_torch_model.save(output_folder + "/" + model_name + ".pt")
|
63 |
+
print_log(task_id, model_name, "转换为TorchScript模型", "完成")
|
64 |
+
|
65 |
+
print_log(task_id, model_name, "运行命令"+command, "开始")
|
66 |
+
|
67 |
+
try:
|
68 |
+
# 使用 subprocess.Popen 执行命令
|
69 |
+
process = subprocess.Popen(command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, text=True)
|
70 |
+
while True:
|
71 |
+
output = process.stdout.readline()
|
72 |
+
if output == '' and process.poll() is not None:
|
73 |
+
break
|
74 |
+
if output:
|
75 |
+
log += output.strip() + '\n'
|
76 |
+
if log_to_terminal:
|
77 |
+
print(output.strip())
|
78 |
+
returncode = process.poll()
|
79 |
+
if returncode != 0:
|
80 |
+
log += f"执行命令: {command} 失败,返回码: {returncode}\n"
|
81 |
+
else:
|
82 |
+
log += f"执行命令: {command} 成功\n"
|
83 |
+
except Exception as e:
|
84 |
+
log += f"执行命令: {command} 失败,错误信息: {str(e)}\n"
|
85 |
+
|
86 |
+
return [os.path.join(output_folder, f) for f in os.listdir(output_folder) if os.path.isfile(os.path.join(output_folder, f))], log
|
87 |
+
|
88 |
+
# 修改为字典类型
|
89 |
+
downloaded_files = {}
|
90 |
+
# 修改 start_process 函数,处理新增输入
|
91 |
+
def start_process(input1, input2, shape0_str, shape1_str, input_suffix=".pth"):
|
92 |
+
task_id = str(uuid.uuid4())
|
93 |
+
log = ""
|
94 |
+
try:
|
95 |
+
# 判断 input1 是地址还是文件,增加对 ftp 和 webdav 协议的支持
|
96 |
+
supported_protocols = ('http://', 'https://', 'ftp://', 'webdav://')
|
97 |
+
if isinstance(input1, str) and input1.startswith(supported_protocols):
|
98 |
+
url = input1
|
99 |
+
if url in downloaded_files and os.path.exists(downloaded_files[url]):
|
100 |
+
file_path = downloaded_files[url]
|
101 |
+
log += f"跳过下载,文件已存在: {file_path}\n"
|
102 |
+
print_log(task_id, input2, "检查下载状态", "跳过下载")
|
103 |
+
yield [], log
|
104 |
+
else:
|
105 |
+
# 生成唯一文件名
|
106 |
+
file_name = str(uuid.uuid4()) + input_suffix
|
107 |
+
file_path = os.path.join(os.getcwd(), file_name)
|
108 |
+
if url.startswith('ftp://'):
|
109 |
+
try:
|
110 |
+
# 解析 ftp 地址
|
111 |
+
parts = url.replace('ftp://', '').split('/')
|
112 |
+
host = parts[0]
|
113 |
+
remote_file_path = '/'.join(parts[1:])
|
114 |
+
ftp = FTP(host)
|
115 |
+
ftp.login()
|
116 |
+
with open(file_path, 'wb') as f:
|
117 |
+
ftp.retrbinary('RETR ' + remote_file_path, f.write)
|
118 |
+
ftp.quit()
|
119 |
+
downloaded_files[url] = file_path
|
120 |
+
log += f"文件下载成功: {file_path}\n"
|
121 |
+
yield [], log
|
122 |
+
except Exception as e:
|
123 |
+
log += f"FTP 文件下载失败: {str(e)}\n"
|
124 |
+
print_log(task_id, input2, "下载文件", f"失败 (FTP): {str(e)}")
|
125 |
+
yield [], log
|
126 |
+
return
|
127 |
+
else :
|
128 |
+
if url.startswith(('http://', 'https://')):
|
129 |
+
response = requests.get(url)
|
130 |
+
if response.status_code == 200:
|
131 |
+
with open(file_path, 'wb') as f:
|
132 |
+
f.write(response.content)
|
133 |
+
downloaded_files[url] = file_path
|
134 |
+
log += f"文件下载成功: {file_path}\n"
|
135 |
+
yield [], log
|
136 |
+
else:
|
137 |
+
log += f"文件下载失败,状态码: {response.status_code}\n"
|
138 |
+
yield [], log
|
139 |
+
return
|
140 |
+
|
141 |
+
elif input1 is not None:
|
142 |
+
file_path = input1.name
|
143 |
+
log += f"使用上传的文件: {file_path}\n"
|
144 |
+
print_log(task_id, input2, "使用上传文件", "开始")
|
145 |
+
yield [], log
|
146 |
+
else:
|
147 |
+
log += "未提供有效文件或地址\n"
|
148 |
+
print_log(task_id, input2, "检查文件输入", "失败 (无有效输入)")
|
149 |
+
yield [], log
|
150 |
+
return
|
151 |
+
|
152 |
+
# 生成新文件夹用于暂存结果
|
153 |
+
output_folder = os.path.join(os.getcwd(), str(uuid.uuid4()))
|
154 |
+
os.makedirs(output_folder, exist_ok=True)
|
155 |
+
log += f"创建临时文件夹: {output_folder}\n"
|
156 |
+
print_log(task_id, input2, "创建临时文件夹", "完成")
|
157 |
+
yield [], log
|
158 |
+
|
159 |
+
# 解析输入的字符串为数组
|
160 |
+
try:
|
161 |
+
# 尝试解析 shape0_str
|
162 |
+
shape0 = [int(x) for x in shape0_str.split(',')] if shape0_str else [0, 0, 0, 0]
|
163 |
+
# 检查 shape0 是否为 4 个元素,如果不是则设置为全 0
|
164 |
+
if len(shape0) != 4:
|
165 |
+
shape0 = [0, 0, 0, 0]
|
166 |
+
# 尝试解析 shape1_str
|
167 |
+
shape1 = [int(x) for x in shape1_str.split(',')] if shape1_str else [0, 0, 0, 0]
|
168 |
+
# 检查 shape1 是否为 4 个元素,如果不是则设置为全 0
|
169 |
+
if len(shape1) != 4:
|
170 |
+
shape1 = [0, 0, 0, 0]
|
171 |
+
except ValueError:
|
172 |
+
# 如果解析过程中出现 ValueError,将 shape0 和 shape1 设置为全 0
|
173 |
+
shape0 = [0, 0, 0, 0]
|
174 |
+
shape1 = [0, 0, 0, 0]
|
175 |
+
log += "输入的 shape 字符串格式不正确,请使用逗号分隔的整数。\n"
|
176 |
+
yield [], log
|
177 |
+
return
|
178 |
+
|
179 |
+
# 调用处理函数,传递 shape 数组
|
180 |
+
output_files, process_log = process_file(task_id, file_path, input2, output_folder, shape0, shape1)
|
181 |
+
log += process_log
|
182 |
+
log += f"处理完成,输出文件: {output_files}\n"
|
183 |
+
print_log(task_id, input2, "调用处理函数", "完成")
|
184 |
+
yield output_files, log
|
185 |
+
except Exception as e:
|
186 |
+
log += f"发生错误: {str(e)}\n"
|
187 |
+
print_log(task_id, input2, "整体处理", f"失败: {str(e)}")
|
188 |
+
yield [], log
|
189 |
+
|
190 |
+
|
191 |
+
# 创建 Gradio 界面
|
192 |
+
with gr.Blocks() as demo:
|
193 |
+
gr.Markdown("文件处理界面")
|
194 |
+
with gr.Row():
|
195 |
+
# 左侧列,包含输入组件和按钮
|
196 |
+
with gr.Column():
|
197 |
+
with gr.Row():
|
198 |
+
input1 = gr.Textbox(label="粘贴地址")
|
199 |
+
input1_file = gr.File(label="上传文件")
|
200 |
+
input2 = gr.Textbox(label="自定义文件名")
|
201 |
+
# 修改为字符串输入控件
|
202 |
+
shape0_str = gr.Textbox(label="shape0 (逗号分隔的整数)", value="1,3,128,128")
|
203 |
+
shape1_str = gr.Textbox(label="shape1 (逗号分隔的整数)", value="0,0,0,0")
|
204 |
+
start_button = gr.Button("开始")
|
205 |
+
# 右侧列,包含输出组件和日志文本框
|
206 |
+
with gr.Column():
|
207 |
+
output = gr.File(label="输出文件", file_count="multiple")
|
208 |
+
log_textbox = gr.Textbox(label="日志", lines=10, interactive=False)
|
209 |
+
|
210 |
+
# 绑定事件,修改输入参数
|
211 |
+
start_button.click(
|
212 |
+
fn=start_process,
|
213 |
+
inputs=[input1_file if input1_file.value else input1, input2, shape0_str, shape1_str],
|
214 |
+
outputs=[output, log_textbox]
|
215 |
+
)
|
216 |
+
|
217 |
+
demo.launch()
|