File size: 9,734 Bytes
ef6397b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
import gradio as gr
from PIL import Image
import IPython.display as display
import matplotlib.pyplot as plt
from base64 import b64encode
import numpy
import torch
import torch.nn.functional as F
from diffusers import AutoencoderKL, LMSDiscreteScheduler, UNet2DConditionModel
from huggingface_hub import notebook_login

# For video display:
from IPython.display import HTML
from matplotlib import pyplot as plt
from pathlib import Path
from PIL import Image
from torch import autocast
from torchvision import transforms as tfms
from tqdm.auto import tqdm
from transformers import CLIPTextModel, CLIPTokenizer, logging
import os

torch.manual_seed(1)

# Supress some unnecessary warnings when loading the CLIPTextModel
logging.set_verbosity_error()

# Set device
torch_device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
if "mps" == torch_device: os.environ['PYTORCH_ENABLE_MPS_FALLBACK'] = "1"

# Load the autoencoder model which will be used to decode the latents into image space.
vae = AutoencoderKL.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="vae")

# Load the tokenizer and text encoder to tokenize and encode the text.
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14")
text_encoder = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14")

# The UNet model for generating the latents.
unet = UNet2DConditionModel.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="unet")

# The noise scheduler
scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000)

# To the GPU we go!
vae = vae.to(torch_device)
text_encoder = text_encoder.to(torch_device)
unet = unet.to(torch_device);

def pil_to_latent(input_im):
    # Single image -> single latent in a batch (so size 1, 4, 64, 64)
    with torch.no_grad():
        latent = vae.encode(tfms.ToTensor()(input_im).unsqueeze(0).to(torch_device)*2-1) # Note scaling
    return 0.18215 * latent.latent_dist.sample()

def latents_to_pil(latents):
    # bath of latents -> list of images
    latents = (1 / 0.18215) * latents
    with torch.no_grad():
        image = vae.decode(latents).sample
    image = (image / 2 + 0.5).clamp(0, 1)
    image = image.detach().cpu().permute(0, 2, 3, 1).numpy()
    images = (image * 255).round().astype("uint8")
    pil_images = [Image.fromarray(image) for image in images]
    return pil_images

# Prep Scheduler
def set_timesteps(scheduler, num_inference_steps):
    scheduler.set_timesteps(num_inference_steps)
    scheduler.timesteps = scheduler.timesteps.to(torch.float32) # minor fix to ensure MPS compatibility, fixed in diffusers PR 3925

def blue_loss(images):
    # How far are the blue channel values to 0.9:
    error = torch.abs(images[:,2] - 0.9).mean() # [:,2] -> all images in batch, only the blue channel
    return error

def diversity_loss(images):
    # Calculate the pairwise L2 distances between images
    pairwise_distances = torch.norm(images.unsqueeze(1) - images.unsqueeze(0), p=2, dim=3)
    # Encourage diversity by minimizing the mean distance
    diversity_loss = torch.mean(pairwise_distances)
    return diversity_loss

def red_loss(images):
    # How far are the red channel values to a target value (e.g., 0.7):
    error = torch.abs(images[:, 0] - 0.7).mean()  # [:, 0] -> all images in batch, only the red channel
    return error

def green_loss(images):
    # How far are the green channel values to a target value (e.g., 0.8):
    error = torch.abs(images[:, 1] - 0.8).mean()  # [:, 1] -> all images in batch, only the green channel
    return error

def saturation_loss(images, target_saturation=0.5):
    # Calculate the saturation of each image (based on color intensity)
    saturation = images.max(dim=3)[0] - images.min(dim=3)[0]
    # Calculate the mean absolute difference from the target saturation
    loss = torch.abs(saturation - target_saturation).mean()
    return loss

def brightness_loss(images, target_brightness=0.6):
    # Calculate the brightness of each image (e.g., average pixel intensity)
    brightness = images.mean(dim=(2, 3))
    # Calculate the mean squared error from the target brightness
    loss = (brightness - target_brightness).pow(2).mean()
    return loss

def edge_detection_loss(images):
    # Use Sobel filters to compute image gradients in x and y directions
    gradient_x = F.conv2d(images, torch.tensor([[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]], dtype=images.dtype).view(1, 1, 3, 3), padding=1)
    gradient_y = F.conv2d(images, torch.tensor([[-1, -2, -1], [0, 0, 0], [1, 2, 1]], dtype=images.dtype).view(1, 1, 3, 3), padding=1)
    # Calculate the magnitude of the gradients
    gradient_magnitude = torch.sqrt(gradient_x**2 + gradient_y**2)
    # Encourage a specific level of edge presence
    loss = gradient_magnitude.mean()
    return loss

def noise_regularization_loss(images, noise_std=0.1):
    # Calculate the mean squared error of the image against noisy versions of itself
    noisy_images = images + noise_std * torch.randn_like(images)
    loss = torch.mean((images - noisy_images).pow(2))
    return loss

def image_generation(prompt, loss_fxn):
    generated_image = []
    seed_list = [8, 16, 32, 64, 128]
    for seed in seed_list:
        latents_values = []
        height = 512                        # default height of Stable Diffusion
        width = 512
        num_inference_steps = 50 
        guidance_scale = 8                    # default width of Stable Diffusion
        num_inference_steps = num_inference_steps
        guidance_scale = guidance_scale
        batch_size = 1
        blue_loss_scale = 200 #param
        generator = torch.manual_seed(seed)

        # Prep text
        text_input = tokenizer([prompt], padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt")
        with torch.no_grad():
            text_embeddings = text_encoder(text_input.input_ids.to(torch_device))[0]

        # And the uncond. input as before:
        max_length = text_input.input_ids.shape[-1]
        uncond_input = tokenizer(
            [""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt"
        )
        with torch.no_grad():
            uncond_embeddings = text_encoder(uncond_input.input_ids.to(torch_device))[0]
        text_embeddings = torch.cat([uncond_embeddings, text_embeddings])

        # Prep Scheduler
        set_timesteps(scheduler, num_inference_steps)

        # Prep latents
        latents = torch.randn(
            (batch_size, unet.in_channels, height // 8, width // 8),
            generator=generator,
            )
        latents = latents.to(torch_device)
        latents = latents * scheduler.init_noise_sigma

        # Loop
        for i, t in tqdm(enumerate(scheduler.timesteps), total=len(scheduler.timesteps)):
            # expand the latents if we are doing classifier-free guidance to avoid doing two forward passes.
            latent_model_input = torch.cat([latents] * 2)
            sigma = scheduler.sigmas[i]
            latent_model_input = scheduler.scale_model_input(latent_model_input, t)

            # predict the noise residual
            with torch.no_grad():
                noise_pred = unet(latent_model_input, t, encoder_hidden_states=text_embeddings)["sample"]

            # perform CFG
            noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
            noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)

            #### ADDITIONAL GUIDANCE ###
            if i%5 == 0:
                # Requires grad on the latents
                latents = latents.detach().requires_grad_()

                # Get the predicted x0:
                latents_x0 = latents - sigma * noise_pred
                #latents_x0 = scheduler.step(noise_pred, t, latents).pred_original_sample

                # Decode to image space
                denoised_images = vae.decode((1 / 0.18215) * latents_x0).sample / 2 + 0.5 # range (0, 1)

                # Calculate loss
                loss = blue_loss(denoised_images) * blue_loss_scale

                # Occasionally print it out
                # if i%10==0:
                #     print(i, 'loss:', loss.item())

                # Get gradient
                cond_grad = torch.autograd.grad(loss, latents)[0]

                # Modify the latents based on this gradient
                latents = latents.detach() - cond_grad * sigma**2

            # Now step with scheduler
            latents = scheduler.step(noise_pred, t, latents).prev_sample
        generated_image.append(latents_to_pil(latents)[0])
        latents_values.append(latents)

    return generated_image, latents_values


# Create a Gradio interface
iface = gr.Interface(
    fn=image_generation,
    inputs=[
        # gr.inputs.CheckboxGroup(
        #     label="Seed List", choices=[8, 32, 64, 128, 256], type="number"
        # ),
        gr.inputs.Textbox(label="Prompt Input"),
        gr.inputs.Radio(
            label="Loss Function",
            choices=[
                "Diversity Loss",
                "Saturation Loss",
                "Brightness Loss",
                "Edge Detection Loss",
                "Noise Regularization Loss",
                "Blue Loss",
                "Red Loss",
                "Green Loss"
            ],
        ),
    ],
    outputs=gr.outputs.Image(type="pil", label="Generated Images"),
    title="Stable Diffusion Guided by Loss Function Image Generation with Gradio",
    description="Enter parameters to generate images using Stable Diffusion with optional loss functions.",
)

# Launch the Gradio interface
iface.launch()