Spaces:
Build error
Build error
File size: 9,734 Bytes
ef6397b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 |
import gradio as gr
from PIL import Image
import IPython.display as display
import matplotlib.pyplot as plt
from base64 import b64encode
import numpy
import torch
import torch.nn.functional as F
from diffusers import AutoencoderKL, LMSDiscreteScheduler, UNet2DConditionModel
from huggingface_hub import notebook_login
# For video display:
from IPython.display import HTML
from matplotlib import pyplot as plt
from pathlib import Path
from PIL import Image
from torch import autocast
from torchvision import transforms as tfms
from tqdm.auto import tqdm
from transformers import CLIPTextModel, CLIPTokenizer, logging
import os
torch.manual_seed(1)
# Supress some unnecessary warnings when loading the CLIPTextModel
logging.set_verbosity_error()
# Set device
torch_device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
if "mps" == torch_device: os.environ['PYTORCH_ENABLE_MPS_FALLBACK'] = "1"
# Load the autoencoder model which will be used to decode the latents into image space.
vae = AutoencoderKL.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="vae")
# Load the tokenizer and text encoder to tokenize and encode the text.
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14")
text_encoder = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14")
# The UNet model for generating the latents.
unet = UNet2DConditionModel.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="unet")
# The noise scheduler
scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000)
# To the GPU we go!
vae = vae.to(torch_device)
text_encoder = text_encoder.to(torch_device)
unet = unet.to(torch_device);
def pil_to_latent(input_im):
# Single image -> single latent in a batch (so size 1, 4, 64, 64)
with torch.no_grad():
latent = vae.encode(tfms.ToTensor()(input_im).unsqueeze(0).to(torch_device)*2-1) # Note scaling
return 0.18215 * latent.latent_dist.sample()
def latents_to_pil(latents):
# bath of latents -> list of images
latents = (1 / 0.18215) * latents
with torch.no_grad():
image = vae.decode(latents).sample
image = (image / 2 + 0.5).clamp(0, 1)
image = image.detach().cpu().permute(0, 2, 3, 1).numpy()
images = (image * 255).round().astype("uint8")
pil_images = [Image.fromarray(image) for image in images]
return pil_images
# Prep Scheduler
def set_timesteps(scheduler, num_inference_steps):
scheduler.set_timesteps(num_inference_steps)
scheduler.timesteps = scheduler.timesteps.to(torch.float32) # minor fix to ensure MPS compatibility, fixed in diffusers PR 3925
def blue_loss(images):
# How far are the blue channel values to 0.9:
error = torch.abs(images[:,2] - 0.9).mean() # [:,2] -> all images in batch, only the blue channel
return error
def diversity_loss(images):
# Calculate the pairwise L2 distances between images
pairwise_distances = torch.norm(images.unsqueeze(1) - images.unsqueeze(0), p=2, dim=3)
# Encourage diversity by minimizing the mean distance
diversity_loss = torch.mean(pairwise_distances)
return diversity_loss
def red_loss(images):
# How far are the red channel values to a target value (e.g., 0.7):
error = torch.abs(images[:, 0] - 0.7).mean() # [:, 0] -> all images in batch, only the red channel
return error
def green_loss(images):
# How far are the green channel values to a target value (e.g., 0.8):
error = torch.abs(images[:, 1] - 0.8).mean() # [:, 1] -> all images in batch, only the green channel
return error
def saturation_loss(images, target_saturation=0.5):
# Calculate the saturation of each image (based on color intensity)
saturation = images.max(dim=3)[0] - images.min(dim=3)[0]
# Calculate the mean absolute difference from the target saturation
loss = torch.abs(saturation - target_saturation).mean()
return loss
def brightness_loss(images, target_brightness=0.6):
# Calculate the brightness of each image (e.g., average pixel intensity)
brightness = images.mean(dim=(2, 3))
# Calculate the mean squared error from the target brightness
loss = (brightness - target_brightness).pow(2).mean()
return loss
def edge_detection_loss(images):
# Use Sobel filters to compute image gradients in x and y directions
gradient_x = F.conv2d(images, torch.tensor([[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]], dtype=images.dtype).view(1, 1, 3, 3), padding=1)
gradient_y = F.conv2d(images, torch.tensor([[-1, -2, -1], [0, 0, 0], [1, 2, 1]], dtype=images.dtype).view(1, 1, 3, 3), padding=1)
# Calculate the magnitude of the gradients
gradient_magnitude = torch.sqrt(gradient_x**2 + gradient_y**2)
# Encourage a specific level of edge presence
loss = gradient_magnitude.mean()
return loss
def noise_regularization_loss(images, noise_std=0.1):
# Calculate the mean squared error of the image against noisy versions of itself
noisy_images = images + noise_std * torch.randn_like(images)
loss = torch.mean((images - noisy_images).pow(2))
return loss
def image_generation(prompt, loss_fxn):
generated_image = []
seed_list = [8, 16, 32, 64, 128]
for seed in seed_list:
latents_values = []
height = 512 # default height of Stable Diffusion
width = 512
num_inference_steps = 50
guidance_scale = 8 # default width of Stable Diffusion
num_inference_steps = num_inference_steps
guidance_scale = guidance_scale
batch_size = 1
blue_loss_scale = 200 #param
generator = torch.manual_seed(seed)
# Prep text
text_input = tokenizer([prompt], padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt")
with torch.no_grad():
text_embeddings = text_encoder(text_input.input_ids.to(torch_device))[0]
# And the uncond. input as before:
max_length = text_input.input_ids.shape[-1]
uncond_input = tokenizer(
[""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt"
)
with torch.no_grad():
uncond_embeddings = text_encoder(uncond_input.input_ids.to(torch_device))[0]
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
# Prep Scheduler
set_timesteps(scheduler, num_inference_steps)
# Prep latents
latents = torch.randn(
(batch_size, unet.in_channels, height // 8, width // 8),
generator=generator,
)
latents = latents.to(torch_device)
latents = latents * scheduler.init_noise_sigma
# Loop
for i, t in tqdm(enumerate(scheduler.timesteps), total=len(scheduler.timesteps)):
# expand the latents if we are doing classifier-free guidance to avoid doing two forward passes.
latent_model_input = torch.cat([latents] * 2)
sigma = scheduler.sigmas[i]
latent_model_input = scheduler.scale_model_input(latent_model_input, t)
# predict the noise residual
with torch.no_grad():
noise_pred = unet(latent_model_input, t, encoder_hidden_states=text_embeddings)["sample"]
# perform CFG
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
#### ADDITIONAL GUIDANCE ###
if i%5 == 0:
# Requires grad on the latents
latents = latents.detach().requires_grad_()
# Get the predicted x0:
latents_x0 = latents - sigma * noise_pred
#latents_x0 = scheduler.step(noise_pred, t, latents).pred_original_sample
# Decode to image space
denoised_images = vae.decode((1 / 0.18215) * latents_x0).sample / 2 + 0.5 # range (0, 1)
# Calculate loss
loss = blue_loss(denoised_images) * blue_loss_scale
# Occasionally print it out
# if i%10==0:
# print(i, 'loss:', loss.item())
# Get gradient
cond_grad = torch.autograd.grad(loss, latents)[0]
# Modify the latents based on this gradient
latents = latents.detach() - cond_grad * sigma**2
# Now step with scheduler
latents = scheduler.step(noise_pred, t, latents).prev_sample
generated_image.append(latents_to_pil(latents)[0])
latents_values.append(latents)
return generated_image, latents_values
# Create a Gradio interface
iface = gr.Interface(
fn=image_generation,
inputs=[
# gr.inputs.CheckboxGroup(
# label="Seed List", choices=[8, 32, 64, 128, 256], type="number"
# ),
gr.inputs.Textbox(label="Prompt Input"),
gr.inputs.Radio(
label="Loss Function",
choices=[
"Diversity Loss",
"Saturation Loss",
"Brightness Loss",
"Edge Detection Loss",
"Noise Regularization Loss",
"Blue Loss",
"Red Loss",
"Green Loss"
],
),
],
outputs=gr.outputs.Image(type="pil", label="Generated Images"),
title="Stable Diffusion Guided by Loss Function Image Generation with Gradio",
description="Enter parameters to generate images using Stable Diffusion with optional loss functions.",
)
# Launch the Gradio interface
iface.launch() |