Upload img_gen_v2.py
Browse files- img_gen_v2.py +4 -5
img_gen_v2.py
CHANGED
|
@@ -6,7 +6,6 @@ from diffusers import StableDiffusionImg2ImgPipeline, \
|
|
| 6 |
|
| 7 |
def check_cuda_device():
|
| 8 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 9 |
-
print(device)
|
| 10 |
return device
|
| 11 |
|
| 12 |
|
|
@@ -40,25 +39,25 @@ def get_image_to_image_model(path=None, device=None):
|
|
| 40 |
device = check_cuda_device()
|
| 41 |
pipe.to(device)
|
| 42 |
|
| 43 |
-
print(device)
|
| 44 |
-
|
| 45 |
return pipe
|
| 46 |
|
| 47 |
|
| 48 |
def gen_initial_img(int_prompt):
|
| 49 |
model = get_the_model(None)
|
| 50 |
-
image = model(int_prompt, num_inference_steps=
|
| 51 |
|
| 52 |
return image
|
| 53 |
|
| 54 |
|
| 55 |
-
def generate_story(int_prompt, steps, iterations=
|
| 56 |
image_dic = {}
|
| 57 |
init_img = gen_initial_img(int_prompt)
|
| 58 |
img2img_model = get_image_to_image_model()
|
| 59 |
img = init_img
|
| 60 |
|
| 61 |
for idx, step in enumerate(steps):
|
|
|
|
|
|
|
| 62 |
image = img2img_model(prompt=step, image=img, strength=0.75, guidance_scale=7.5,
|
| 63 |
num_inference_steps=iterations).images[0]
|
| 64 |
image_dic[idx] = {
|
|
|
|
| 6 |
|
| 7 |
def check_cuda_device():
|
| 8 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
|
|
|
| 9 |
return device
|
| 10 |
|
| 11 |
|
|
|
|
| 39 |
device = check_cuda_device()
|
| 40 |
pipe.to(device)
|
| 41 |
|
|
|
|
|
|
|
| 42 |
return pipe
|
| 43 |
|
| 44 |
|
| 45 |
def gen_initial_img(int_prompt):
|
| 46 |
model = get_the_model(None)
|
| 47 |
+
image = model(int_prompt, num_inference_steps=100).images[0]
|
| 48 |
|
| 49 |
return image
|
| 50 |
|
| 51 |
|
| 52 |
+
def generate_story(int_prompt, steps, iterations=100):
|
| 53 |
image_dic = {}
|
| 54 |
init_img = gen_initial_img(int_prompt)
|
| 55 |
img2img_model = get_image_to_image_model()
|
| 56 |
img = init_img
|
| 57 |
|
| 58 |
for idx, step in enumerate(steps):
|
| 59 |
+
print(f"step: {idx}")
|
| 60 |
+
print(step)
|
| 61 |
image = img2img_model(prompt=step, image=img, strength=0.75, guidance_scale=7.5,
|
| 62 |
num_inference_steps=iterations).images[0]
|
| 63 |
image_dic[idx] = {
|