File size: 8,674 Bytes
d7e58f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
# Copyright (c) OpenMMLab. All rights reserved.
import logging
import os
import os.path as osp
import platform
import random
import string
import tempfile

import pytest
import torch
import torch.nn as nn

from mmcv.parallel import MMDataParallel
from mmcv.runner import (RUNNERS, EpochBasedRunner, IterBasedRunner,
                         build_runner)
from mmcv.runner.hooks import IterTimerHook


class OldStyleModel(nn.Module):

    def __init__(self):
        super().__init__()
        self.conv = nn.Conv2d(3, 3, 1)


class Model(OldStyleModel):

    def train_step(self):
        pass

    def val_step(self):
        pass


def test_build_runner():
    temp_root = tempfile.gettempdir()
    dir_name = ''.join(
        [random.choice(string.ascii_letters) for _ in range(10)])

    default_args = dict(
        model=Model(),
        work_dir=osp.join(temp_root, dir_name),
        logger=logging.getLogger())
    cfg = dict(type='EpochBasedRunner', max_epochs=1)
    runner = build_runner(cfg, default_args=default_args)
    assert runner._max_epochs == 1
    cfg = dict(type='IterBasedRunner', max_iters=1)
    runner = build_runner(cfg, default_args=default_args)
    assert runner._max_iters == 1

    with pytest.raises(ValueError, match='Only one of'):
        cfg = dict(type='IterBasedRunner', max_epochs=1, max_iters=1)
        runner = build_runner(cfg, default_args=default_args)


@pytest.mark.parametrize('runner_class', RUNNERS.module_dict.values())
def test_epoch_based_runner(runner_class):

    with pytest.warns(DeprecationWarning):
        # batch_processor is deprecated
        model = OldStyleModel()

        def batch_processor():
            pass

        _ = runner_class(model, batch_processor, logger=logging.getLogger())

    with pytest.raises(TypeError):
        # batch_processor must be callable
        model = OldStyleModel()
        _ = runner_class(model, batch_processor=0, logger=logging.getLogger())

    with pytest.raises(TypeError):
        # optimizer must be a optimizer or a dict of optimizers
        model = Model()
        optimizer = 'NotAOptimizer'
        _ = runner_class(
            model, optimizer=optimizer, logger=logging.getLogger())

    with pytest.raises(TypeError):
        # optimizer must be a optimizer or a dict of optimizers
        model = Model()
        optimizers = dict(optim1=torch.optim.Adam(), optim2='NotAOptimizer')
        _ = runner_class(
            model, optimizer=optimizers, logger=logging.getLogger())

    with pytest.raises(TypeError):
        # logger must be a logging.Logger
        model = Model()
        _ = runner_class(model, logger=None)

    with pytest.raises(TypeError):
        # meta must be a dict or None
        model = Model()
        _ = runner_class(model, logger=logging.getLogger(), meta=['list'])

    with pytest.raises(AssertionError):
        # model must implement the method train_step()
        model = OldStyleModel()
        _ = runner_class(model, logger=logging.getLogger())

    with pytest.raises(TypeError):
        # work_dir must be a str or None
        model = Model()
        _ = runner_class(model, work_dir=1, logger=logging.getLogger())

    with pytest.raises(RuntimeError):
        # batch_processor and train_step() cannot be both set

        def batch_processor():
            pass

        model = Model()
        _ = runner_class(model, batch_processor, logger=logging.getLogger())

    # test work_dir
    model = Model()
    temp_root = tempfile.gettempdir()
    dir_name = ''.join(
        [random.choice(string.ascii_letters) for _ in range(10)])
    work_dir = osp.join(temp_root, dir_name)
    _ = runner_class(model, work_dir=work_dir, logger=logging.getLogger())
    assert osp.isdir(work_dir)
    _ = runner_class(model, work_dir=work_dir, logger=logging.getLogger())
    assert osp.isdir(work_dir)
    os.removedirs(work_dir)


@pytest.mark.parametrize('runner_class', RUNNERS.module_dict.values())
def test_runner_with_parallel(runner_class):

    def batch_processor():
        pass

    model = MMDataParallel(OldStyleModel())
    _ = runner_class(model, batch_processor, logger=logging.getLogger())

    model = MMDataParallel(Model())
    _ = runner_class(model, logger=logging.getLogger())

    with pytest.raises(RuntimeError):
        # batch_processor and train_step() cannot be both set

        def batch_processor():
            pass

        model = MMDataParallel(Model())
        _ = runner_class(model, batch_processor, logger=logging.getLogger())


@pytest.mark.parametrize('runner_class', RUNNERS.module_dict.values())
def test_save_checkpoint(runner_class):
    model = Model()
    runner = runner_class(model=model, logger=logging.getLogger())

    with pytest.raises(TypeError):
        # meta should be None or dict
        runner.save_checkpoint('.', meta=list())

    with tempfile.TemporaryDirectory() as root:
        runner.save_checkpoint(root)

        latest_path = osp.join(root, 'latest.pth')
        assert osp.exists(latest_path)

        if isinstance(runner, EpochBasedRunner):
            first_ckp_path = osp.join(root, 'epoch_1.pth')
        elif isinstance(runner, IterBasedRunner):
            first_ckp_path = osp.join(root, 'iter_1.pth')

        assert osp.exists(first_ckp_path)

        if platform.system() != 'Windows':
            assert osp.realpath(latest_path) == osp.realpath(first_ckp_path)
        else:
            # use copy instead of symlink on windows
            pass

        torch.load(latest_path)


@pytest.mark.parametrize('runner_class', RUNNERS.module_dict.values())
def test_build_lr_momentum_hook(runner_class):
    model = Model()
    runner = runner_class(model=model, logger=logging.getLogger())

    # test policy that is already title
    lr_config = dict(
        policy='CosineAnnealing',
        by_epoch=False,
        min_lr_ratio=0,
        warmup_iters=2,
        warmup_ratio=0.9)
    runner.register_lr_hook(lr_config)
    assert len(runner.hooks) == 1

    # test policy that is already title
    lr_config = dict(
        policy='Cyclic',
        by_epoch=False,
        target_ratio=(10, 1),
        cyclic_times=1,
        step_ratio_up=0.4)
    runner.register_lr_hook(lr_config)
    assert len(runner.hooks) == 2

    # test policy that is not title
    lr_config = dict(
        policy='cyclic',
        by_epoch=False,
        target_ratio=(0.85 / 0.95, 1),
        cyclic_times=1,
        step_ratio_up=0.4)
    runner.register_lr_hook(lr_config)
    assert len(runner.hooks) == 3

    # test policy that is title
    lr_config = dict(
        policy='Step',
        warmup='linear',
        warmup_iters=500,
        warmup_ratio=1.0 / 3,
        step=[8, 11])
    runner.register_lr_hook(lr_config)
    assert len(runner.hooks) == 4

    # test policy that is not title
    lr_config = dict(
        policy='step',
        warmup='linear',
        warmup_iters=500,
        warmup_ratio=1.0 / 3,
        step=[8, 11])
    runner.register_lr_hook(lr_config)
    assert len(runner.hooks) == 5

    # test policy that is already title
    mom_config = dict(
        policy='CosineAnnealing',
        min_momentum_ratio=0.99 / 0.95,
        by_epoch=False,
        warmup_iters=2,
        warmup_ratio=0.9 / 0.95)
    runner.register_momentum_hook(mom_config)
    assert len(runner.hooks) == 6

    # test policy that is already title
    mom_config = dict(
        policy='Cyclic',
        by_epoch=False,
        target_ratio=(0.85 / 0.95, 1),
        cyclic_times=1,
        step_ratio_up=0.4)
    runner.register_momentum_hook(mom_config)
    assert len(runner.hooks) == 7

    # test policy that is already title
    mom_config = dict(
        policy='cyclic',
        by_epoch=False,
        target_ratio=(0.85 / 0.95, 1),
        cyclic_times=1,
        step_ratio_up=0.4)
    runner.register_momentum_hook(mom_config)
    assert len(runner.hooks) == 8


@pytest.mark.parametrize('runner_class', RUNNERS.module_dict.values())
def test_register_timer_hook(runner_class):
    model = Model()
    runner = runner_class(model=model, logger=logging.getLogger())

    # test register None
    timer_config = None
    runner.register_timer_hook(timer_config)
    assert len(runner.hooks) == 0

    # test register IterTimerHook with config
    timer_config = dict(type='IterTimerHook')
    runner.register_timer_hook(timer_config)
    assert len(runner.hooks) == 1
    assert isinstance(runner.hooks[0], IterTimerHook)

    # test register IterTimerHook
    timer_config = IterTimerHook()
    runner.register_timer_hook(timer_config)
    assert len(runner.hooks) == 2
    assert isinstance(runner.hooks[1], IterTimerHook)