import streamlit as st from transformers import AutoTokenizer, AutoModelWithLMHead, pipeline def getit(prompt): generated = tokenizer(f'<|startoftext|> {prompt}', return_tensors="pt").input_ids.cpu() sample_outputs = sample_outputs = model.generate( generated, do_sample=True, max_length=512, top_k=50, top_p=0.95, num_return_sequences=1, no_repeat_ngram_size = 3, temperature = 0.7 ) predicted_text = tokenizer.decode(sample_outputs[0], skip_special_tokens=True) return predicted_text[len(prompt):] model_name = 'tsaditya/GPT-Kalki' model = AutoModelWithLMHead.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) inp = st.text_input(value="ஆதித்த கரிகாலர் தஞ்சைக்குச் செல்ல உடனடியாக ஒப்புக்கொண்டார்.",label = "Enter prompt") if st.button("Generate!"): out = getit(inp) st.write(out) video_file = open(r'myvideo.mp4', 'rb') video_bytes = video_file.read() st.video(video_bytes)