truens66 commited on
Commit
4681f96
·
verified ·
1 Parent(s): 68e19d8

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -17
app.py CHANGED
@@ -117,7 +117,6 @@
117
 
118
 
119
 
120
-
121
  import gradio as gr
122
  import cv2
123
  import torch
@@ -132,22 +131,13 @@ mp_face_mesh = mp.solutions.face_mesh
132
  face_detection = mp_face_detection.FaceDetection(model_selection=1, min_detection_confidence=0.5)
133
  face_mesh = mp_face_mesh.FaceMesh(static_image_mode=False, max_num_faces=1, min_detection_confidence=0.5)
134
 
135
- # Load deepfake detection model (updated)
136
- model = models.resnet34(pretrained=False) # Load base ResNet-34
137
- model.fc = torch.nn.Linear(model.fc.in_features, 2) # Modify final layer
138
-
139
- # Load weights properly
140
- checkpoint = torch.load("resnet34.pth", map_location="cpu")
141
-
142
- # Extract just the model weights (ignore optimizer states)
143
- if "network" in checkpoint: # Handle different checkpoint formats
144
- model.load_state_dict(checkpoint["network"])
145
- elif "state_dict" in checkpoint:
146
- model.load_state_dict(checkpoint["state_dict"])
147
- else:
148
- # Directly try loading if it's pure state_dict
149
- model.load_state_dict(checkpoint)
150
 
 
151
  model.eval()
152
 
153
  # Define transformation for face images
@@ -212,7 +202,6 @@ def process_video(video_path: str):
212
  output_video.release()
213
  return output_path
214
 
215
- # Rest of the Gradio interface remains the same
216
  def gradio_interface(video_file):
217
  if video_file is None:
218
  return "Error: No video uploaded."
 
117
 
118
 
119
 
 
120
  import gradio as gr
121
  import cv2
122
  import torch
 
131
  face_detection = mp_face_detection.FaceDetection(model_selection=1, min_detection_confidence=0.5)
132
  face_mesh = mp_face_mesh.FaceMesh(static_image_mode=False, max_num_faces=1, min_detection_confidence=0.5)
133
 
134
+ # Initialize ResNet-34 model with random weights
135
+ def create_model():
136
+ model = models.resnet34(pretrained=False)
137
+ model.fc = torch.nn.Linear(model.fc.in_features, 2)
138
+ return model
 
 
 
 
 
 
 
 
 
 
139
 
140
+ model = create_model()
141
  model.eval()
142
 
143
  # Define transformation for face images
 
202
  output_video.release()
203
  return output_path
204
 
 
205
  def gradio_interface(video_file):
206
  if video_file is None:
207
  return "Error: No video uploaded."