truens66's picture
Update app.py
35709e7 verified
raw
history blame
10.9 kB
# import gradio as gr
# import cv2
# import torch
# import dlib
# import numpy as np
# from imutils import face_utils
# from torchvision import models, transforms
# from tempfile import NamedTemporaryFile
# import shutil
# # Load face detector and landmark predictor
# face_detector = dlib.get_frontal_face_detector()
# PREDICTOR_PATH = "./shape_predictor_81_face_landmarks.dat"
# face_predictor = dlib.shape_predictor(PREDICTOR_PATH)
# import torch
# import torchvision.models as models
# # Load pretrained ResNet-34 model
# resnet34 = models.resnet34(weights=models.ResNet34_Weights.IMAGENET1K_V1)
# resnet34.fc = torch.nn.Linear(resnet34.fc.in_features, 2)
# ckpt_path = "./resnet34.pkl"
# # Save model state dict
# torch.save(resnet34.state_dict(), ckpt_path)
# print(f"✅ Model saved at {ckpt_path}")
# # Load deepfake detection model
# model = models.resnet34()
# model.fc = torch.nn.Linear(model.fc.in_features, 2)
# model.load_state_dict(torch.load(ckpt_path, map_location="cpu"))
# model.eval()
# # Define transformation for face images
# transform = transforms.Compose([
# transforms.ToPILImage(),
# transforms.Resize((224, 224)),
# transforms.ToTensor(),
# transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
# ])
# def process_video(video_path: str):
# cap = cv2.VideoCapture(video_path)
# width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
# height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
# fps = int(cap.get(cv2.CAP_PROP_FPS))
# output_path = video_path.replace(".mp4", "_processed.mp4")
# output_video = cv2.VideoWriter(output_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (width, height))
# while cap.isOpened():
# ret, frame = cap.read()
# if not ret:
# break
# rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
# faces = face_detector(rgb_frame, 1)
# for face in faces:
# landmarks = face_utils.shape_to_np(face_predictor(rgb_frame, face))
# x_min, y_min = np.min(landmarks, axis=0)
# x_max, y_max = np.max(landmarks, axis=0)
# face_crop = rgb_frame[y_min:y_max, x_min:x_max]
# if face_crop.size == 0:
# continue
# face_tensor = transform(face_crop).unsqueeze(0)
# with torch.no_grad():
# output = torch.softmax(model(face_tensor), dim=1)
# fake_confidence = output[0, 1].item() * 100 # Fake confidence as a percentage
# label = "Fake" if fake_confidence > 50 else "Real"
# color = (0, 0, 255) if label == "Fake" else (0, 255, 0)
# # Annotating confidence score with label
# label_text = f"{label} ({fake_confidence:.2f}%)"
# cv2.rectangle(frame, (x_min, y_min), (x_max, y_max), color, 2)
# cv2.putText(frame, label_text, (x_min, y_min - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 1)
# output_video.write(frame)
# cap.release()
# output_video.release()
# return output_path
# def gradio_interface(video_file):
# if video_file is None:
# return "Error: No video uploaded."
# # Create a temporary file and copy the uploaded video content
# with NamedTemporaryFile(delete=False, suffix=".mp4") as temp_file:
# temp_file_path = temp_file.name
# # Read the uploaded video file using its path
# with open(video_file, "rb") as uploaded_file:
# temp_file.write(uploaded_file.read())
# output_path = process_video(temp_file_path)
# return output_path
# # Gradio UI
# iface = gr.Interface(
# fn=gradio_interface,
# inputs=gr.Video(label="Upload Video"),
# outputs=gr.Video(label="Processed Video"),
# title="Deepfake Detection",
# description="Upload a video to detect deepfakes. The model will process faces and classify them as real or fake."
# )
# if __name__ == "__main__":
# iface.launch()
import gradio as gr
import cv2
import torch
import numpy as np
import mediapipe as mp
from torchvision import models, transforms
from tempfile import NamedTemporaryFile
from pathlib import Path
import logging
from typing import Tuple, Optional
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class DeepfakeDetector:
def __init__(self, detection_confidence: float = 0.5, max_faces: int = 1):
"""Initialize the DeepfakeDetector with MediaPipe and ResNet model."""
self.mp_face_detection = mp.solutions.face_detection
self.mp_face_mesh = mp.solutions.face_mesh
# Initialize face detection and mesh
self.face_detection = self.mp_face_detection.FaceDetection(
model_selection=1,
min_detection_confidence=detection_confidence
)
self.face_mesh = self.mp_face_mesh.FaceMesh(
static_image_mode=False,
max_num_faces=max_faces,
min_detection_confidence=detection_confidence
)
# Initialize model and transform
self.model = self._create_model()
self.transform = self._create_transform()
@staticmethod
def _create_model() -> torch.nn.Module:
"""Create and configure the ResNet model."""
model = models.resnet34(weights=None)
model.fc = torch.nn.Linear(model.fc.in_features, 2)
model.eval()
return model
@staticmethod
def _create_transform() -> transforms.Compose:
"""Create the image transformation pipeline."""
return transforms.Compose([
transforms.ToPILImage(),
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]
)
])
def get_face_bbox(self, landmarks, frame_shape: Tuple[int, int]) -> Tuple[int, int, int, int]:
"""Extract face bounding box from landmarks."""
h, w = frame_shape[:2]
xs = [lm.x * w for lm in landmarks.landmark]
ys = [lm.y * h for lm in landmarks.landmark]
return (
max(0, int(min(xs))),
max(0, int(min(ys))),
min(w, int(max(xs))),
min(h, int(max(ys)))
)
def process_frame(self, frame: np.ndarray) -> np.ndarray:
"""Process a single frame to detect deepfakes."""
rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
# Detect faces
detection_results = self.face_detection.process(rgb_frame)
if not detection_results.detections:
return frame
# Process each detected face
for detection in detection_results.detections:
mesh_results = self.face_mesh.process(rgb_frame)
if not mesh_results.multi_face_landmarks:
continue
for face_landmarks in mesh_results.multi_face_landmarks:
frame = self._analyze_face(frame, rgb_frame, face_landmarks)
return frame
def _analyze_face(self, frame: np.ndarray, rgb_frame: np.ndarray,
face_landmarks) -> np.ndarray:
"""Analyze a single face and draw results on frame."""
# Get face bbox
x_min, y_min, x_max, y_max = self.get_face_bbox(
face_landmarks, frame.shape
)
# Crop and transform face
face_crop = rgb_frame[y_min:y_max, x_min:x_max]
if face_crop.size == 0:
return frame
# Run inference
try:
face_tensor = self.transform(face_crop).unsqueeze(0)
with torch.no_grad():
output = torch.softmax(self.model(face_tensor), dim=1)
fake_confidence = output[0, 1].item() * 100
except Exception as e:
logger.error(f"Error during inference: {str(e)}")
return frame
# Draw results
label = "Fake" if fake_confidence > 50 else "Real"
color = (0, 0, 255) if label == "Fake" else (0, 255, 0)
label_text = f"{label} ({fake_confidence:.2f}%)"
cv2.rectangle(frame, (x_min, y_min), (x_max, y_max), color, 2)
cv2.putText(frame, label_text, (x_min, y_min - 10),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 1)
return frame
def process_video(self, video_path: str) -> Optional[str]:
"""Process a video file and return path to processed video."""
try:
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
logger.error("Error opening video file")
return None
# Get video properties
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = int(cap.get(cv2.CAP_PROP_FPS))
# Set up output video
output_path = str(Path(video_path).with_suffix('')) + "_processed.mp4"
output_video = cv2.VideoWriter(
output_path,
cv2.VideoWriter_fourcc(*'mp4v'),
fps,
(width, height)
)
# Process frames
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
processed_frame = self.process_frame(frame)
output_video.write(processed_frame)
# Clean up
cap.release()
output_video.release()
return output_path
except Exception as e:
logger.error(f"Error processing video: {str(e)}")
return None
def gradio_interface(video_file):
"""Gradio interface function."""
if video_file is None:
return "Error: No video uploaded."
detector = DeepfakeDetector()
with NamedTemporaryFile(delete=False, suffix=".mp4") as temp_file:
temp_file_path = temp_file.name
with open(video_file, "rb") as uploaded_file:
temp_file.write(uploaded_file.read())
output_path = detector.process_video(temp_file_path)
if output_path is None:
return "Error processing video"
return output_path
# Create Gradio interface
iface = gr.Interface(
fn=gradio_interface,
inputs=gr.Video(label="Upload Video"),
outputs=gr.Video(label="Processed Video"),
title="Deepfake Detection",
description="Upload a video to detect deepfakes",
examples=[], # Add example videos here if available
)
if __name__ == "__main__":
iface.launch(
server_name="0.0.0.0",
share=True, # Set to True to create a public link
debug=True
)