Spaces:
Running
Running
Update pipeline.py
Browse files- pipeline.py +32 -0
pipeline.py
CHANGED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import numpy as np
|
3 |
+
import tensorflow as tf
|
4 |
+
|
5 |
+
# Load model
|
6 |
+
model = tf.keras.models.load_model("efficientnet-b0/")
|
7 |
+
|
8 |
+
class DetectionPipeline:
|
9 |
+
def __init__(self, batch_size=1):
|
10 |
+
self.batch_size = batch_size
|
11 |
+
|
12 |
+
def __call__(self, filename):
|
13 |
+
print('Processing image...')
|
14 |
+
image = cv2.cvtColor(filename, cv2.COLOR_BGR2RGB)
|
15 |
+
image = cv2.resize(image, (224, 224))
|
16 |
+
return image
|
17 |
+
|
18 |
+
# Initialize image detection pipeline
|
19 |
+
detection_image_pipeline = DetectionPipeline()
|
20 |
+
|
21 |
+
def deepfakes_image_predict(input_image):
|
22 |
+
face = detection_image_pipeline(input_image)
|
23 |
+
face2 = face / 255.0
|
24 |
+
pred = model.predict(np.expand_dims(face2, axis=0))[0]
|
25 |
+
real, fake = pred[0], pred[1]
|
26 |
+
|
27 |
+
if real > 0.5:
|
28 |
+
text = f"The image is REAL. \n Deepfakes Confidence: {round(100 - (real * 100), 3)}%"
|
29 |
+
else:
|
30 |
+
text = f"The image is FAKE. \n Deepfakes Confidence: {round(fake * 100, 3)}%"
|
31 |
+
|
32 |
+
return text
|