kinet-test / kinetix /models /transformer_model.py
tree3po's picture
Upload 46 files
581eeac verified
import functools
import jax.numpy as jnp
import flax.linen as nn
import numpy as np
from flax.linen.initializers import constant, orthogonal
from typing import List, Sequence
import distrax
import jax
from kinetix.models.actor_critic import GeneralActorCriticRNN, ScannedRNN
from kinetix.render.renderer_symbolic_entity import EntityObservation
from flax.linen.attention import MultiHeadDotProductAttention
class Gating(nn.Module):
# code taken from https://github.com/dhruvramani/Transformers-RL/blob/master/layers.py
d_input: int
bg: float = 0.0
@nn.compact
def __call__(self, x, y):
r = jax.nn.sigmoid(nn.Dense(self.d_input, use_bias=False)(y) + nn.Dense(self.d_input, use_bias=False)(x))
z = jax.nn.sigmoid(
nn.Dense(self.d_input, use_bias=False)(y)
+ nn.Dense(self.d_input, use_bias=False)(x)
- self.param("gating_bias", constant(self.bg), (self.d_input,))
)
h = jnp.tanh(nn.Dense(self.d_input, use_bias=False)(y) + nn.Dense(self.d_input, use_bias=False)(r * x))
g = (1 - z) * x + (z * h)
return g
class transformer_layer(nn.Module):
num_heads: int
out_features: int
qkv_features: int
gating: bool = False
gating_bias: float = 0.0
def setup(self):
self.attention1 = MultiHeadDotProductAttention(
num_heads=self.num_heads, qkv_features=self.qkv_features, out_features=self.out_features
)
self.ln1 = nn.LayerNorm()
self.dense1 = nn.Dense(self.out_features)
self.dense2 = nn.Dense(self.out_features)
self.ln2 = nn.LayerNorm()
if self.gating:
self.gate1 = Gating(self.out_features, self.gating_bias)
self.gate2 = Gating(self.out_features, self.gating_bias)
def __call__(self, queries: jnp.ndarray, mask: jnp.ndarray):
# After reading the paper, this is what I think we should do:
# First layernorm, then do attention
queries_n = self.ln1(queries)
y = self.attention1(queries_n, mask=mask)
if self.gating: # and gate
y = self.gate1(queries, jax.nn.relu(y))
else:
y = queries + y
# Dense after norming, crucially no relu.
e = self.dense1(self.ln2(y))
if self.gating: # and gate again
# This may be the wrong way around
e = self.gate2(y, jax.nn.relu(e))
else:
e = y + e
return e
class Transformer(nn.Module):
encoder_size: int
num_heads: int
qkv_features: int
num_layers: int
gating: bool = False
gating_bias: float = 0.0
def setup(self):
# self.encoder = nn.Dense(self.encoder_size)
# self.positional_encoding = PositionalEncoding(self.encoder_size, max_len=self.max_len)
self.tf_layers = [
transformer_layer(
num_heads=self.num_heads,
qkv_features=self.qkv_features,
out_features=self.encoder_size,
gating=self.gating,
gating_bias=self.gating_bias,
)
for _ in range(self.num_layers)
]
self.joint_layers = [nn.Dense(self.encoder_size) for _ in range(self.num_layers)]
self.thruster_layers = [nn.Dense(self.encoder_size) for _ in range(self.num_layers)]
# self.pos_emb=PositionalEmbedding(self.encoder_size)
def __call__(
self,
shape_embeddings: jnp.ndarray,
shape_attention_mask,
joint_embeddings,
joint_mask,
joint_indexes,
thruster_embeddings,
thruster_mask,
thruster_indexes,
):
# forward eval so obs is only one timestep
# encoded = self.encoder(shape_embeddings)
# pos_embed=self.pos_emb(jnp.arange(1+memories.shape[-3],-1,-1))[:1+memories.shape[-3]]
for tf_layer, joint_layer, thruster_layer in zip(self.tf_layers, self.joint_layers, self.thruster_layers):
# Do attention
shape_embeddings = tf_layer(shape_embeddings, shape_attention_mask)
# Joints
# T, B, 2J, (2SE + JE)
@jax.vmap
@jax.vmap
def do_index2(to_ind, ind):
return to_ind[ind]
joint_shape_embeddings = jnp.concatenate(
[
do_index2(shape_embeddings, joint_indexes[..., 0]),
do_index2(shape_embeddings, joint_indexes[..., 1]),
joint_embeddings,
],
axis=-1,
)
shape_joint_entity_delta = joint_layer(joint_shape_embeddings) * joint_mask[..., None]
@jax.vmap
@jax.vmap
def add2(addee, index, adder):
return addee.at[index].add(adder)
# Thrusters
thruster_shape_embeddings = jnp.concatenate(
[
do_index2(shape_embeddings, thruster_indexes),
thruster_embeddings,
],
axis=-1,
)
shape_thruster_entity_delta = thruster_layer(thruster_shape_embeddings) * thruster_mask[..., None]
shape_embeddings = add2(shape_embeddings, joint_indexes[..., 0], shape_joint_entity_delta)
shape_embeddings = add2(shape_embeddings, thruster_indexes, shape_thruster_entity_delta)
return shape_embeddings
class ActorCriticTransformer(nn.Module):
action_dim: Sequence[int]
fc_layer_width: int
action_mode: str
hybrid_action_continuous_dim: int
multi_discrete_number_of_dims_per_distribution: List[int]
transformer_size: int
transformer_encoder_size: int
transformer_depth: int
fc_layer_depth: int
num_heads: int
activation: str
aggregate_mode: str # "dummy" or "mean" or "dummy_and_mean"
full_attention_mask: bool # if true, only mask out inactives, and have everything attend to everything else
add_generator_embedding: bool = False
generator_embedding_number_of_timesteps: int = 10
recurrent: bool = True
@nn.compact
def __call__(self, hidden, x):
if self.activation == "relu":
activation = nn.relu
else:
activation = nn.tanh
og_obs, dones = x
if self.add_generator_embedding:
obs = og_obs.obs
else:
obs = og_obs
# obs._ is [T, B, N, L]
# B - batch size
# T - time
# N - number of things
# L - unembedded entity size
obs: EntityObservation
def _single_encoder(features, entity_id, concat=True):
# assume two entity types
num_to_remove = 1 if concat else 0
embedding = activation(
nn.Dense(
self.transformer_encoder_size - num_to_remove,
kernel_init=orthogonal(np.sqrt(2)),
bias_init=constant(0.0),
)(features)
)
if concat:
id_1h = jnp.zeros((*embedding.shape[:3], 1)).at[:, :, :, entity_id].set(entity_id)
return jnp.concatenate([embedding, id_1h], axis=-1)
else:
return embedding
circle_encodings = _single_encoder(obs.circles, 0)
polygon_encodings = _single_encoder(obs.polygons, 1)
joint_encodings = _single_encoder(obs.joints, -1, False)
thruster_encodings = _single_encoder(obs.thrusters, -1, False)
# Size of this is something like (T, B, N, K) (time, batch, num_entities, embedding_size)
# T, B, M, K
shape_encodings = jnp.concatenate([polygon_encodings, circle_encodings], axis=2)
# T, B, M
shape_mask = jnp.concatenate([obs.polygon_mask, obs.circle_mask], axis=2)
def mask_out_inactives(flat_active_mask, matrix_attention_mask):
matrix_attention_mask = matrix_attention_mask & (flat_active_mask[:, None]) & (flat_active_mask[None, :])
return matrix_attention_mask
joint_indexes = obs.joint_indexes
thruster_indexes = obs.thruster_indexes
if self.aggregate_mode == "dummy" or self.aggregate_mode == "dummy_and_mean":
T, B, _, K = circle_encodings.shape
dummy = jnp.ones((T, B, 1, K))
shape_encodings = jnp.concatenate([dummy, shape_encodings], axis=2)
shape_mask = jnp.concatenate(
[jnp.ones((T, B, 1), dtype=bool), shape_mask],
axis=2,
)
N = obs.attention_mask.shape[-1]
overall_mask = (
jnp.ones((T, B, obs.attention_mask.shape[2], N + 1, N + 1), dtype=bool)
.at[:, :, :, 1:, 1:]
.set(obs.attention_mask)
)
overall_mask = jax.vmap(jax.vmap(mask_out_inactives))(shape_mask, overall_mask)
# To account for the dummy entity
joint_indexes = joint_indexes + 1
thruster_indexes = thruster_indexes + 1
else:
overall_mask = obs.attention_mask
if self.full_attention_mask:
overall_mask = jnp.ones(overall_mask.shape, dtype=bool)
overall_mask = jax.vmap(jax.vmap(mask_out_inactives))(shape_mask, overall_mask)
# Now do attention on these
embedding = Transformer(
num_layers=self.transformer_depth,
num_heads=self.num_heads,
qkv_features=self.transformer_size,
encoder_size=self.transformer_encoder_size,
gating=True,
gating_bias=0.0,
)(
shape_encodings,
jnp.repeat(overall_mask, repeats=self.num_heads // overall_mask.shape[2], axis=2),
joint_encodings,
obs.joint_mask,
joint_indexes,
thruster_encodings,
obs.thruster_mask,
thruster_indexes,
) # add the extra dimension for the heads
if self.aggregate_mode == "mean" or self.aggregate_mode == "dummy_and_mean":
embedding = jnp.mean(embedding, axis=2, where=shape_mask[..., None])
else:
embedding = embedding[:, :, 0] # Take the dummy entity as the embedding of the entire scene.
return GeneralActorCriticRNN(
action_dim=self.action_dim,
fc_layer_depth=self.fc_layer_depth,
fc_layer_width=self.fc_layer_width,
action_mode=self.action_mode,
hybrid_action_continuous_dim=self.hybrid_action_continuous_dim,
multi_discrete_number_of_dims_per_distribution=self.multi_discrete_number_of_dims_per_distribution,
add_generator_embedding=self.add_generator_embedding,
generator_embedding_number_of_timesteps=self.generator_embedding_number_of_timesteps,
recurrent=self.recurrent,
)(hidden, og_obs, embedding, dones, activation)