kinet-test / kinetix /models /rel_multi_head.py
tree3po's picture
Upload 46 files
581eeac verified
# Copyright 2023 The Flax Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# CODE IS HEAVILY INSPIRED FROM https://github.com/huggingface/transformers/blob/v4.40.1/src/transformers/models/deprecated/transfo_xl/modeling_transfo_xl.py
# MOST OF THE TIME JUST A CONVERSION IN JAX
"""Relative Attention HEAVILY INSPIRED FROM https://github.com/huggingface/transformers/blob/v4.40.1/src/transformers/models/deprecated/transfo_xl/modeling_transfo_xl.py
, flax attention, https://github.com/kimiyoung/transformer-xl/blob/master/pytorch/mem_transformer.py#L143, most of the time just a flax/jax conversion """
import functools
from typing import Any, Callable, Optional, Tuple
from flax.linen.dtypes import promote_dtype
from flax.linen import initializers
from flax.linen.linear import default_kernel_init
from flax.linen.linear import DenseGeneral
from flax.linen.linear import DotGeneralT
from flax.linen.linear import PrecisionLike
from flax.linen.module import compact
from flax.linen.module import merge_param
from flax.linen.module import Module
import jax
from jax import lax
from jax import random
import jax.numpy as jnp
PRNGKey = Any
Shape = Tuple[int, ...]
Dtype = Any
Array = Any
roll_vmap = jax.vmap(jnp.roll, in_axes=(-2, 0, None), out_axes=-2)
def _rel_shift(x):
zero_pad_shape = x.shape[:-2] + (x.shape[-2], 1)
zero_pad = jnp.zeros(zero_pad_shape, dtype=x.dtype)
x_padded = jnp.concatenate([zero_pad, x], axis=-1)
x_padded_shape = x.shape[:-2] + (x.shape[-1] + 1, x.shape[-2])
x_padded = x_padded.reshape(x_padded_shape)
# x_padded=jnp.swapaxes(x_padded,0,1)
x = jnp.take(x_padded, jnp.arange(1, x_padded.shape[-2]), axis=-2).reshape(x.shape)
return x
def dot_product_attention_weights(
query: Array,
key: Array,
r_pos_embed,
r_r_bias,
r_w_bias,
bias: Optional[Array] = None,
mask: Optional[Array] = None,
broadcast_dropout: bool = True,
dropout_rng: Optional[PRNGKey] = None,
dropout_rate: float = 0.0,
deterministic: bool = False,
dtype: Optional[Dtype] = None,
precision: PrecisionLike = None,
):
"""Computes dot-product attention weights given query and key.
Used by :func:`dot_product_attention`, which is what you'll most likely use.
But if you want access to the attention weights for introspection, then
you can directly call this function and call einsum yourself.
Args:
query: queries for calculating attention with shape of
`[batch..., q_length, num_heads, qk_depth_per_head]`.
key: keys for calculating attention with shape of
`[batch..., kv_length, num_heads, qk_depth_per_head]`.
bias: bias for the attention weights. This should be broadcastable to the
shape `[batch..., num_heads, q_length, kv_length]`.
This can be used for incorporating causal masks, padding masks,
proximity bias, etc.
mask: mask for the attention weights. This should be broadcastable to the
shape `[batch..., num_heads, q_length, kv_length]`.
This can be used for incorporating causal masks.
Attention weights are masked out if their corresponding mask value
is `False`.
broadcast_dropout: bool: use a broadcasted dropout along batch dims.
dropout_rng: JAX PRNGKey: to be used for dropout
dropout_rate: dropout rate
deterministic: bool, deterministic or not (to apply dropout)
dtype: the dtype of the computation (default: infer from inputs and params)
precision: numerical precision of the computation see `jax.lax.Precision`
for details.
Returns:
Output of shape `[batch..., num_heads, q_length, kv_length]`.
"""
query, key = promote_dtype(query, key, dtype=dtype)
dtype = query.dtype
assert query.ndim == key.ndim, "q, k must have same rank."
assert query.shape[:-3] == key.shape[:-3], "q, k batch dims must match."
assert query.shape[-2] == key.shape[-2], "q, k num_heads must match."
assert query.shape[-1] == key.shape[-1], "q, k depths must match."
# calculate attention matrix
depth = query.shape[-1]
# query = query
# attn weight shape is (batch..., num_heads, q_length, kv_length)
attn_weights = jnp.einsum("...qhd,...khd->...hqk", query + r_w_bias, key, precision=precision)
attn_weights_r = jnp.einsum("...qhd,khd->...hqk", query + r_r_bias, r_pos_embed, precision=precision)
attn_weights_r = roll_vmap(attn_weights_r, jnp.arange(0, query.shape[-3]) - (query.shape[-3] - 1), -1)
# attn_weights_r=_rel_shift(attn_weights_r)
attn_weights = attn_weights + attn_weights_r
attn_weights = attn_weights / jnp.sqrt(depth).astype(dtype)
# apply attention bias: masking, dropout, proximity bias, etc.
if bias is not None:
attn_weights = attn_weights + bias
# apply attention mask
if mask is not None:
big_neg = jnp.finfo(dtype).min
attn_weights = jnp.where(mask, attn_weights, big_neg)
# normalize the attention weights
attn_weights = jax.nn.softmax(attn_weights).astype(dtype)
# apply attention dropout
if not deterministic and dropout_rate > 0.0:
keep_prob = 1.0 - dropout_rate
if broadcast_dropout:
# dropout is broadcast across the batch + head dimensions
dropout_shape = tuple([1] * (key.ndim - 2)) + attn_weights.shape[-2:]
keep = random.bernoulli(dropout_rng, keep_prob, dropout_shape) # type: ignore
else:
keep = random.bernoulli(dropout_rng, keep_prob, attn_weights.shape) # type: ignore
multiplier = keep.astype(dtype) / jnp.asarray(keep_prob, dtype=dtype)
attn_weights = attn_weights * multiplier
return attn_weights
def dot_product_attention(
query: Array,
key: Array,
value: Array,
r_pos_embed,
r_r_bias,
r_w_bias,
bias: Optional[Array] = None,
mask: Optional[Array] = None,
broadcast_dropout: bool = True,
dropout_rng: Optional[PRNGKey] = None,
dropout_rate: float = 0.0,
deterministic: bool = False,
dtype: Optional[Dtype] = None,
precision: PrecisionLike = None,
):
"""Computes dot-product attention given query, key, and value.
This is the core function for applying attention based on
https://arxiv.org/abs/1706.03762. It calculates the attention weights given
query and key and combines the values using the attention weights.
Note: query, key, value needn't have any batch dimensions.
Args:
query: queries for calculating attention with shape of
`[batch..., q_length, num_heads, qk_depth_per_head]`.
key: keys for calculating attention with shape of
`[batch..., kv_length, num_heads, qk_depth_per_head]`.
value: values to be used in attention with shape of
`[batch..., kv_length, num_heads, v_depth_per_head]`.
bias: bias for the attention weights. This should be broadcastable to the
shape `[batch..., num_heads, q_length, kv_length]`.
This can be used for incorporating causal masks, padding masks,
proximity bias, etc.
mask: mask for the attention weights. This should be broadcastable to the
shape `[batch..., num_heads, q_length, kv_length]`.
This can be used for incorporating causal masks.
Attention weights are masked out if their corresponding mask value
is `False`.
broadcast_dropout: bool: use a broadcasted dropout along batch dims.
dropout_rng: JAX PRNGKey: to be used for dropout
dropout_rate: dropout rate
deterministic: bool, deterministic or not (to apply dropout)
dtype: the dtype of the computation (default: infer from inputs)
precision: numerical precision of the computation see `jax.lax.Precision`
for details.
Returns:
Output of shape `[batch..., q_length, num_heads, v_depth_per_head]`.
"""
query, key, value = promote_dtype(query, key, value, dtype=dtype)
dtype = query.dtype
assert key.ndim == query.ndim == value.ndim, "q, k, v must have same rank."
assert query.shape[:-3] == key.shape[:-3] == value.shape[:-3], "q, k, v batch dims must match."
assert query.shape[-2] == key.shape[-2] == value.shape[-2], "q, k, v num_heads must match."
assert key.shape[-3] == value.shape[-3], "k, v lengths must match."
# compute attention weights
attn_weights = dot_product_attention_weights(
query,
key,
r_pos_embed,
r_r_bias,
r_w_bias,
bias,
mask,
broadcast_dropout,
dropout_rng,
dropout_rate,
deterministic,
dtype,
precision,
)
# return weighted sum over values for each query position
return jnp.einsum("...hqk,...khd->...qhd", attn_weights, value, precision=precision)
class RelMultiHeadDotProductAttention(Module):
"""Multi-head dot-product attention.
Attributes:
num_heads: number of attention heads. Features (i.e. inputs_q.shape[-1])
should be divisible by the number of heads.
dtype: the dtype of the computation (default: infer from inputs and params)
param_dtype: the dtype passed to parameter initializers (default: float32)
qkv_features: dimension of the key, query, and value.
out_features: dimension of the last projection
broadcast_dropout: bool: use a broadcasted dropout along batch dims.
dropout_rate: dropout rate
deterministic: if false, the attention weight is masked randomly using
dropout, whereas if true, the attention weights are deterministic.
precision: numerical precision of the computation see `jax.lax.Precision`
for details.
kernel_init: initializer for the kernel of the Dense layers.
bias_init: initializer for the bias of the Dense layers.
use_bias: bool: whether pointwise QKVO dense transforms use bias.
attention_fn: dot_product_attention or compatible function. Accepts query,
key, value, and returns output of shape `[bs, dim1, dim2, ..., dimN,,
num_heads, value_channels]``
decode: whether to prepare and use an autoregressive cache.
"""
num_heads: int
dtype: Optional[Dtype] = None
param_dtype: Dtype = jnp.float32
qkv_features: Optional[int] = None
out_features: Optional[int] = None
broadcast_dropout: bool = True
dropout_rate: float = 0.0
deterministic: Optional[bool] = None
precision: PrecisionLike = None
kernel_init: Callable[[PRNGKey, Shape, Dtype], Array] = default_kernel_init
bias_init: Callable[[PRNGKey, Shape, Dtype], Array] = initializers.zeros_init()
use_bias: bool = True
attention_fn: Callable[..., Array] = dot_product_attention
decode: bool = False
qkv_dot_general: DotGeneralT = lax.dot_general
out_dot_general: DotGeneralT = lax.dot_general
@compact
def __call__(
self,
inputs_q: Array,
inputs_kv: Array,
pos_embed: Array,
mask: Optional[Array] = None,
deterministic: Optional[bool] = None,
):
"""Applies multi-head dot product attention on the input data.
Projects the inputs into multi-headed query, key, and value vectors,
applies dot-product attention and project the results to an output vector.
Args:
inputs_q: input queries of shape
`[batch_sizes..., length, features]`.
inputs_kv: key/values of shape
`[batch_sizes..., length, features]`.
mask: attention mask of shape
`[batch_sizes..., num_heads, query_length, key/value_length]`.
Attention weights are masked out if their corresponding mask value
is `False`.
deterministic: if false, the attention weight is masked randomly
using dropout, whereas if true, the attention weights
are deterministic.
Returns:
output of shape `[batch_sizes..., length, features]`.
"""
features = self.out_features or inputs_q.shape[-1]
qkv_features = self.qkv_features or inputs_q.shape[-1]
assert qkv_features % self.num_heads == 0, (
f"Memory dimension ({qkv_features}) must be divisible by number of" f" heads ({self.num_heads})."
)
head_dim = qkv_features // self.num_heads
dense = functools.partial(
DenseGeneral,
axis=-1,
dtype=self.dtype,
param_dtype=self.param_dtype,
features=(self.num_heads, head_dim),
kernel_init=self.kernel_init,
bias_init=self.bias_init,
use_bias=self.use_bias,
precision=self.precision,
dot_general=self.qkv_dot_general,
)
# project inputs_q to multi-headed q/k/v
# dimensions are then [batch..., length, n_heads, n_features_per_head]
query, key, value = (
dense(name="query")(inputs_q),
dense(name="key")(inputs_kv),
dense(name="value")(inputs_kv),
)
# different bc no bias
dense_relpos = functools.partial(
DenseGeneral,
axis=-1,
dtype=self.dtype,
param_dtype=self.param_dtype,
features=(self.num_heads, head_dim),
kernel_init=self.kernel_init,
use_bias=False,
precision=self.precision,
dot_general=self.qkv_dot_general,
)
r_pos_embed = dense_relpos(name="pos_embed_mat")(pos_embed)
r_r_bias = self.param("r_r_bias", self.bias_init, (self.num_heads, head_dim)) # Initialization function
r_w_bias = self.param("r_w_bias", self.bias_init, (self.num_heads, head_dim)) # Initialization function
# During fast autoregressive decoding, we feed one position at a time,
# and cache the keys and values step by step.
if self.decode:
# detect if we're initializing by absence of existing cache data.
is_initialized = self.has_variable("cache", "cached_key")
cached_key = self.variable("cache", "cached_key", jnp.zeros, key.shape, key.dtype)
cached_value = self.variable("cache", "cached_value", jnp.zeros, value.shape, value.dtype)
cache_index = self.variable("cache", "cache_index", lambda: jnp.array(0, dtype=jnp.int32))
if is_initialized:
(
*batch_dims,
max_length,
num_heads,
depth_per_head,
) = cached_key.value.shape
# shape check of cached keys against query input
expected_shape = tuple(batch_dims) + (1, num_heads, depth_per_head)
if expected_shape != query.shape:
raise ValueError(
"Autoregressive cache shape error, "
"expected query shape %s instead got %s." % (expected_shape, query.shape)
)
# update key, value caches with our new 1d spatial slices
cur_index = cache_index.value
indices = (0,) * len(batch_dims) + (cur_index, 0, 0)
key = lax.dynamic_update_slice(cached_key.value, key, indices)
value = lax.dynamic_update_slice(cached_value.value, value, indices)
cached_key.value = key
cached_value.value = value
cache_index.value = cache_index.value + 1
# causal mask for cached decoder self-attention:
# our single query position should only attend to those key
# positions that have already been generated and cached,
# not the remaining zero elements.
mask = combine_masks(
mask,
jnp.broadcast_to(
jnp.arange(max_length) <= cur_index,
tuple(batch_dims) + (1, 1, max_length),
),
)
dropout_rng = None
if self.dropout_rate > 0.0: # Require `deterministic` only if using dropout.
m_deterministic = merge_param("deterministic", self.deterministic, deterministic)
if not m_deterministic:
dropout_rng = self.make_rng("dropout")
else:
m_deterministic = True
# apply attention
x = self.attention_fn(
query,
key,
value,
r_pos_embed,
r_r_bias,
r_w_bias,
mask=mask,
dropout_rng=dropout_rng,
dropout_rate=self.dropout_rate,
broadcast_dropout=self.broadcast_dropout,
deterministic=m_deterministic,
dtype=self.dtype,
precision=self.precision,
) # pytype: disable=wrong-keyword-args
# back to the original inputs dimensions
out = DenseGeneral(
features=features,
axis=(-2, -1),
kernel_init=self.kernel_init,
bias_init=self.bias_init,
use_bias=self.use_bias,
dtype=self.dtype,
param_dtype=self.param_dtype,
precision=self.precision,
dot_general=self.out_dot_general,
name="out", # type: ignore[call-arg]
)(x)
return out
class SelfAttention(RelMultiHeadDotProductAttention):
"""Self-attention special case of multi-head dot-product attention."""
@compact
def __call__( # type: ignore
self,
inputs_q: Array,
mask: Optional[Array] = None,
deterministic: Optional[bool] = None,
):
"""Applies multi-head dot product self-attention on the input data.
Projects the inputs into multi-headed query, key, and value vectors,
applies dot-product attention and project the results to an output vector.
Args:
inputs_q: input queries of shape
`[batch_sizes..., length, features]`.
mask: attention mask of shape
`[batch_sizes..., num_heads, query_length, key/value_length]`.
Attention weights are masked out if their corresponding mask value
is `False`.
deterministic: if false, the attention weight is masked randomly
using dropout, whereas if true, the attention weights
are deterministic.
Returns:
output of shape `[batch_sizes..., length, features]`.
"""
return super().__call__(inputs_q, inputs_q, mask, deterministic=deterministic)
# mask-making utility functions
def make_attention_mask(
query_input: Array,
key_input: Array,
pairwise_fn: Callable[..., Any] = jnp.multiply,
extra_batch_dims: int = 0,
dtype: Dtype = jnp.float32,
):
"""Mask-making helper for attention weights.
In case of 1d inputs (i.e., `[batch..., len_q]`, `[batch..., len_kv]`, the
attention weights will be `[batch..., heads, len_q, len_kv]` and this
function will produce `[batch..., 1, len_q, len_kv]`.
Args:
query_input: a batched, flat input of query_length size
key_input: a batched, flat input of key_length size
pairwise_fn: broadcasting elementwise comparison function
extra_batch_dims: number of extra batch dims to add singleton
axes for, none by default
dtype: mask return dtype
Returns:
A `[batch..., 1, len_q, len_kv]` shaped mask for 1d attention.
"""
mask = pairwise_fn(jnp.expand_dims(query_input, axis=-1), jnp.expand_dims(key_input, axis=-2))
mask = jnp.expand_dims(mask, axis=-3)
mask = jnp.expand_dims(mask, axis=tuple(range(extra_batch_dims)))
return mask.astype(dtype)
def make_causal_mask(x: Array, extra_batch_dims: int = 0, dtype: Dtype = jnp.float32) -> Array:
"""Make a causal mask for self-attention.
In case of 1d inputs (i.e., `[batch..., len]`, the self-attention weights
will be `[batch..., heads, len, len]` and this function will produce a
causal mask of shape `[batch..., 1, len, len]`.
Args:
x: input array of shape `[batch..., len]`
extra_batch_dims: number of batch dims to add singleton axes for,
none by default
dtype: mask return dtype
Returns:
A `[batch..., 1, len, len]` shaped causal mask for 1d attention.
"""
idxs = jnp.broadcast_to(jnp.arange(x.shape[-1], dtype=jnp.int32), x.shape)
return make_attention_mask(
idxs,
idxs,
jnp.greater_equal,
extra_batch_dims=extra_batch_dims,
dtype=dtype,
)
def combine_masks(*masks: Optional[Array], dtype: Dtype = jnp.float32) -> Array:
"""Combine attention masks.
Args:
*masks: set of attention mask arguments to combine, some can be None.
dtype: dtype for the returned mask.
Returns:
Combined mask, reduced by logical and, returns None if no masks given.
"""
masks_list = [m for m in masks if m is not None]
if not masks_list:
return None
assert all(
map(lambda x: x.ndim == masks_list[0].ndim, masks_list)
), f"masks must have same rank: {tuple(map(lambda x: x.ndim, masks_list))}"
mask, *other_masks = masks_list
for other_mask in other_masks:
mask = jnp.logical_and(mask, other_mask)
return mask.astype(dtype)