Spaces:
Runtime error
Runtime error
File size: 22,440 Bytes
581eeac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 |
import json
import os
import pickle
from typing import Any, Dict, Union
import flax.serialization
import flax.serialization
import flax.serialization
import flax.serialization
import flax.serialization
import flax.serialization
import flax.serialization
import jax
import jax.numpy as jnp
import flax
import wandb
from jax2d.engine import (
calculate_collision_matrix,
get_empty_collision_manifolds,
get_pairwise_interaction_indices,
recalculate_mass_and_inertia,
)
from jax2d.sim_state import RigidBody, SimState
from kinetix.environment.env_state import EnvState, StaticEnvParams, EnvParams
from flax.traverse_util import flatten_dict, unflatten_dict
from safetensors.flax import save_file, load_file
from kinetix.pcg.pcg import env_state_to_pcg_state
from kinetix.pcg.pcg_state import PCGState
import bz2
def check_if_mass_and_inertia_are_correct(state: SimState, env_params: EnvParams, static_params):
new = recalculate_mass_and_inertia(state, static_params, state.polygon_densities, state.circle_densities)
def _check(a, b, shape, name):
a = jnp.where(shape.active, a, jnp.zeros_like(a))
b = jnp.where(shape.active, b, jnp.zeros_like(b))
if not jnp.allclose(a, b):
idxs = jnp.arange(len(shape.active))[(a != b) & shape.active]
new_one = a[idxs]
old_one = b[idxs]
raise ValueError(
f"Error: {name} is not the same after loading. Indexes {idxs} are incorrect. New = {new_one} | Before = {old_one}"
)
_check(new.polygon.inverse_mass, state.polygon.inverse_mass, state.polygon, "Polygon inverse mass")
_check(new.circle.inverse_mass, state.circle.inverse_mass, state.circle, "Circle inverse mass")
_check(new.polygon.inverse_inertia, state.polygon.inverse_inertia, state.polygon, "Polygon inverse inertia")
_check(new.circle.inverse_inertia, state.circle.inverse_inertia, state.circle, "Circle inverse inertia")
return True
def save_pickle(filename, state):
with open(filename, "wb") as f:
pickle.dump(state, f)
def load_pcg_state_pickle(filename):
with open(filename, "rb") as f:
return pickle.load(f)
def expand_env_state(env_state: EnvState, static_env_params: StaticEnvParams, ignore_collision_matrix=False):
num_rects = len(env_state.polygon.position)
num_circles = len(env_state.circle.position)
num_joints = len(env_state.joint.a_index)
num_thrusters = len(env_state.thruster.object_index)
def _add_dummy(num_to_add, obj):
return jax.tree_map(
lambda current: jnp.concatenate(
[current, jnp.zeros((num_to_add, *current.shape[1:]), dtype=current.dtype)], axis=0
),
obj,
)
does_need_to_change = False
added_rects = 0
if (
num_rects > static_env_params.num_polygons
or num_circles > static_env_params.num_circles
or num_joints > static_env_params.num_joints
):
raise Exception(
f"The current static_env_params is too small to accommodate the loaded env_state (needs num_rects={num_rects}, num_circles={num_circles}, num_joints={num_joints} but current is {static_env_params.num_polygons}, {static_env_params.num_circles}, {static_env_params.num_joints})."
)
if num_rects < static_env_params.num_polygons:
added_rects = static_env_params.num_polygons - num_rects
does_need_to_change = True
env_state = env_state.replace(
polygon=_add_dummy(added_rects, env_state.polygon),
polygon_shape_roles=_add_dummy(added_rects, env_state.polygon_shape_roles),
polygon_highlighted=_add_dummy(added_rects, env_state.polygon_highlighted),
polygon_densities=_add_dummy(added_rects, env_state.polygon_densities),
)
if num_circles < static_env_params.num_circles:
does_need_to_change = True
n_to_add = static_env_params.num_circles - num_circles
env_state = env_state.replace(
circle=_add_dummy(n_to_add, env_state.circle),
circle_shape_roles=_add_dummy(n_to_add, env_state.circle_shape_roles),
circle_highlighted=_add_dummy(n_to_add, env_state.circle_highlighted),
circle_densities=_add_dummy(n_to_add, env_state.circle_densities),
)
if num_joints < static_env_params.num_joints:
does_need_to_change = True
n_to_add = static_env_params.num_joints - num_joints
env_state = env_state.replace(
joint=_add_dummy(n_to_add, env_state.joint),
motor_bindings=_add_dummy(n_to_add, env_state.motor_bindings),
motor_auto=_add_dummy(n_to_add, env_state.motor_auto),
)
if num_thrusters < static_env_params.num_thrusters:
does_need_to_change = True
n_to_add = static_env_params.num_thrusters - num_thrusters
env_state = env_state.replace(
thruster=_add_dummy(n_to_add, env_state.thruster),
thruster_bindings=_add_dummy(n_to_add, env_state.thruster_bindings),
)
# This fixes the indices
def _modify_index(old_indices):
return jnp.where(old_indices >= num_rects, old_indices + added_rects, old_indices)
if added_rects > 0:
env_state = env_state.replace(
joint=env_state.joint.replace(
a_index=_modify_index(env_state.joint.a_index),
b_index=_modify_index(env_state.joint.b_index),
),
thruster=env_state.thruster.replace(
object_index=_modify_index(env_state.thruster.object_index),
),
)
# Double check the collision manifolds are fine
if does_need_to_change or 1:
# print("Loading but changing the shapes to match the current static params.")
acc_rr_manifolds, acc_cr_manifolds, acc_cc_manifolds = get_empty_collision_manifolds(static_env_params)
env_state = env_state.replace(
collision_matrix=(
env_state.collision_matrix
if ignore_collision_matrix
else calculate_collision_matrix(static_env_params, env_state.joint)
),
acc_rr_manifolds=acc_rr_manifolds,
acc_cr_manifolds=acc_cr_manifolds,
acc_cc_manifolds=acc_cc_manifolds,
)
return env_state
def expand_pcg_state(pcg_state: PCGState, static_env_params):
new_pcg_state = pcg_state.replace(
env_state=expand_env_state(pcg_state.env_state, static_env_params),
env_state_max=expand_env_state(pcg_state.env_state_max, static_env_params),
env_state_pcg_mask=expand_env_state(
pcg_state.env_state_pcg_mask, static_env_params, ignore_collision_matrix=True
),
)
new_pcg_state = new_pcg_state.replace(
env_state_pcg_mask=new_pcg_state.env_state_pcg_mask.replace(
collision_matrix=jnp.zeros_like(new_pcg_state.env_state.collision_matrix, dtype=bool),
)
)
num_shapes = new_pcg_state.env_state.polygon.active.shape[0] + new_pcg_state.env_state.circle.active.shape[0]
return new_pcg_state.replace(
tied_together=jnp.zeros((num_shapes, num_shapes), dtype=bool)
.at[
: pcg_state.tied_together.shape[0],
: pcg_state.tied_together.shape[1],
]
.set(pcg_state.tied_together)
)
def load_world_state_pickle(filename, params=None, static_env_params=None):
static_params = static_env_params or StaticEnvParams()
with open(filename, "rb") as f:
state: SimState = pickle.load(f)
state = jax.tree.map(lambda x: jnp.nan_to_num(x), state)
# Check if the mass and inertia are reasonable.
check_if_mass_and_inertia_are_correct(state, params or EnvParams(), static_params)
# Now check if the shapes are correct
return expand_env_state(state, static_params)
def stack_list_of_pytrees(list_of_pytrees):
v = jax.tree_map(lambda x: jnp.expand_dims(x, 0), list_of_pytrees[0])
for l in list_of_pytrees[1:]:
v = jax.tree_map(lambda x, y: jnp.concatenate([x, jnp.expand_dims(y, 0)], axis=0), v, l)
return v
def get_pcg_state_from_json(json_filename) -> PCGState:
env_state, _, _ = load_from_json_file(json_filename)
return env_state_to_pcg_state(env_state)
def my_load_file(filename):
data = bz2.BZ2File(filename, "rb")
data = pickle.load(data)
return data
def my_save_file(obj, filename):
with bz2.BZ2File(filename, "w") as f:
pickle.dump(obj, f)
def save_params(params: Dict, filename: Union[str, os.PathLike]) -> None:
my_save_file(params, filename)
def load_params(filename: Union[str, os.PathLike], legacy=False) -> Dict:
if legacy:
filename = filename.replace("full_model.pbz2", "model.safetensors")
filename = filename.replace(".pbz2", ".safetensors")
return unflatten_dict(load_file(filename), sep=",")
return my_load_file(filename)
def load_params_from_wandb_artifact_path(checkpoint_name, legacy=False):
api = wandb.Api()
name = api.artifact(checkpoint_name).download()
network_params = load_params(name + "/model.pbz2", legacy=legacy)
return network_params
def save_params_to_wandb(params, timesteps, config):
if config["checkpoint_human_numbers"]:
timesteps = str(round(timesteps / 1e9)) + "B"
run_name = config["run_name"] + "-" + str(config["random_hash"]) + "-" + str(timesteps)
save_dir = os.path.join(config["save_path"], run_name)
os.makedirs(save_dir, exist_ok=True)
save_params(params, f"{save_dir}/model.pbz2")
# upload this to wandb as an artifact
artifact = wandb.Artifact(f"{run_name}-checkpoint", type="checkpoint")
artifact.add_file(f"{save_dir}/model.pbz2")
artifact.save()
print(f"Parameters of model saved in {save_dir}/model.pbz2")
def load_params_wandb_artifact_path_full_model(checkpoint_name):
api = wandb.Api()
name = api.artifact(checkpoint_name).download()
all_dict = load_params(name + "/full_model.pbz2")
return all_dict["params"]
def load_train_state_from_wandb_artifact_path(train_state, checkpoint_name, load_only_params=False, legacy=False):
api = wandb.Api()
name = api.artifact(checkpoint_name).download()
all_dict = load_params(name + "/full_model.pbz2", legacy=legacy)
if legacy:
return train_state.replace(params=all_dict)
train_state = train_state.replace(params=all_dict["params"])
if not load_only_params:
train_state = train_state.replace(
# step=all_dict["step"],
opt_state=all_dict["opt_state"]
)
return train_state
def save_params_to_wandb(params, timesteps, config):
return save_dict_to_wandb(params, timesteps, config, "params")
def save_dict_to_wandb(dict, timesteps, config, name):
timesteps = str(round(timesteps / 1e9)) + "B"
run_name = config["run_name"] + "-" + str(config["random_hash"]) + "-" + str(timesteps)
save_dir = os.path.join(config["save_path"], run_name)
os.makedirs(save_dir, exist_ok=True)
save_params(dict, f"{save_dir}/{name}.pbz2")
# upload this to wandb as an artifact
artifact = wandb.Artifact(f"{run_name}-checkpoint", type="checkpoint")
artifact.add_file(f"{save_dir}/{name}.pbz2")
artifact.save()
print(f"Parameters of model saved in {save_dir}/{name}.pbz2")
def save_model_to_wandb(train_state, timesteps, config, is_final=False):
dict_to_use = {"step": train_state.step, "params": train_state.params, "opt_state": train_state.opt_state}
step = int(train_state.step)
if config["economical_saving"]:
if step in [2048, 10240, 40960, 81920] or is_final:
save_dict_to_wandb(dict_to_use, timesteps, config, "full_model")
else:
print("Not saving model because step is", step)
else:
save_dict_to_wandb(dict_to_use, timesteps, config, "full_model")
def import_env_state_from_json(json_file: dict[str, Any]) -> tuple[EnvState, StaticEnvParams, EnvParams]:
from kinetix.environment.env import create_empty_env
def normalise(k, v):
if k == "screen_dim":
return v
if type(v) == dict and "0" in v:
return jnp.array([normalise(k, v[str(i)]) for i in range(len(v))])
return v
env_state = json_file["env_state"]
env_params = json_file["env_params"]
static_env_params = json_file["static_env_params"]
env_params_target = EnvParams()
static_env_params_target = StaticEnvParams()
new_env_params = flax.serialization.from_state_dict(
env_params_target, {k: normalise(k, v) for k, v in env_params.items()}
)
norm_static = {k: normalise(k, v) for k, v in static_env_params.items()}
# norm_static["screen_dim"] = tuple(static_env_params_target.screen_dim)
norm_static["downscale"] = static_env_params_target.downscale
# print(
# static_env_params_target,
# )
new_static_env_params = flax.serialization.from_state_dict(static_env_params_target, norm_static)
new_static_env_params = new_static_env_params.replace(screen_dim=static_env_params_target.screen_dim)
env_state_target = create_empty_env(new_static_env_params)
def astype(x, all):
return jnp.astype(x, all.dtype)
def _load_rigidbody(env_state_target, i, is_poly):
to_load_from: dict[str, Any] = env_state["circle" if not is_poly else "polygon"][i]
role = to_load_from.pop("role")
density = to_load_from.pop("density")
if "highlighted" in to_load_from:
_ = to_load_from.pop("highlighted")
new_obj = flax.serialization.from_state_dict(
jax.tree.map(lambda x: x[i], env_state_target.circle if not is_poly else env_state_target.polygon),
{k: normalise(k, v) for k, v in to_load_from.items()},
)
if is_poly:
env_state_target = env_state_target.replace(
polygon_shape_roles=env_state_target.polygon_shape_roles.at[i].set(role),
polygon_densities=env_state_target.polygon_densities.at[i].set(density),
polygon=jax.tree.map(
lambda all, new: all.at[i].set(astype(new, all)), env_state_target.polygon, new_obj
),
)
else:
env_state_target = env_state_target.replace(
circle_shape_roles=env_state_target.circle_shape_roles.at[i].set(role),
circle_densities=env_state_target.circle_densities.at[i].set(density),
circle=jax.tree.map(lambda all, new: all.at[i].set(astype(new, all)), env_state_target.circle, new_obj),
)
return env_state_target
# Now load the env state:
for i in range(new_static_env_params.num_circles):
env_state_target = _load_rigidbody(env_state_target, i, False)
for i in range(new_static_env_params.num_polygons):
env_state_target = _load_rigidbody(env_state_target, i, True)
for i in range(new_static_env_params.num_joints):
to_load_from = env_state["joint"][i]
motor_binding = to_load_from.pop("motor_binding")
new_obj = flax.serialization.from_state_dict(
jax.tree.map(lambda x: x[i], env_state_target.joint), {k: normalise(k, v) for k, v in to_load_from.items()}
)
env_state_target = env_state_target.replace(
joint=jax.tree.map(lambda all, new: all.at[i].set(astype(new, all)), env_state_target.joint, new_obj),
motor_bindings=env_state_target.motor_bindings.at[i].set(motor_binding),
)
for i in range(new_static_env_params.num_thrusters):
to_load_from = env_state["thruster"][i]
thruster_binding = to_load_from.pop("thruster_binding")
new_obj = flax.serialization.from_state_dict(
jax.tree.map(lambda x: x[i], env_state_target.thruster),
{k: normalise(k, v) for k, v in to_load_from.items()},
)
env_state_target = env_state_target.replace(
thruster=jax.tree.map(lambda all, new: all.at[i].set(astype(new, all)), env_state_target.thruster, new_obj),
thruster_bindings=env_state_target.thruster_bindings.at[i].set(thruster_binding),
)
env_state_target = env_state_target.replace(
collision_matrix=flax.serialization.from_state_dict(
env_state_target.collision_matrix, normalise("collision_matrix", env_state["collision_matrix"])
)
)
for i in range(env_state_target.acc_rr_manifolds.active.shape[0]):
a = flax.serialization.from_state_dict(
jax.tree.map(lambda x: x[i], env_state_target.acc_rr_manifolds),
{k: normalise(k, v) for k, v in env_state["acc_rr_manifolds"][i].items()},
)
b = flax.serialization.from_state_dict(
jax.tree.map(lambda x: x[i], env_state_target.acc_rr_manifolds),
{k: normalise(k, v) for k, v in env_state["acc_rr_manifolds"][i + 1].items()},
)
env_state_target = env_state_target.replace(
acc_rr_manifolds=jax.tree.map(
lambda all, new: all.at[i].set(astype(new, all)), env_state_target.acc_rr_manifolds, a
),
)
env_state_target.replace(
acc_rr_manifolds=jax.tree.map(
lambda all, new: all.at[i + 1].set(astype(new, all)), env_state_target.acc_rr_manifolds, b
)
)
for i in range(env_state_target.acc_cr_manifolds.active.shape[0]):
a = flax.serialization.from_state_dict(
jax.tree.map(lambda x: x[i], env_state_target.acc_cr_manifolds),
{k: normalise(k, v) for k, v in env_state["acc_cr_manifolds"][i].items()},
)
env_state_target = env_state_target.replace(
acc_cr_manifolds=jax.tree.map(
lambda all, new: all.at[i].set(astype(new, all)), env_state_target.acc_cr_manifolds, a
),
)
for i in range(env_state_target.acc_cc_manifolds.active.shape[0]):
a = flax.serialization.from_state_dict(
jax.tree.map(lambda x: x[i], env_state_target.acc_cc_manifolds),
{k: normalise(k, v) for k, v in env_state["acc_cc_manifolds"][i].items()},
)
env_state_target = env_state_target.replace(
acc_cc_manifolds=jax.tree.map(
lambda all, new: all.at[i].set(astype(new, all)), env_state_target.acc_cc_manifolds, a
),
)
env_state_target = env_state_target.replace(
collision_matrix=calculate_collision_matrix(new_static_env_params, env_state_target.joint)
)
return (
env_state_target,
new_static_env_params,
new_env_params.replace(max_timesteps=env_params_target.max_timesteps),
)
def export_env_state_to_json(
filename: str, env_state: EnvState, static_env_params: StaticEnvParams, env_params: EnvParams
):
json_to_save = {
"polygon": [],
"circle": [],
"joint": [],
"thruster": [],
"collision_matrix": flax.serialization.to_state_dict(env_state.collision_matrix.tolist()),
"acc_rr_manifolds": [],
"acc_cr_manifolds": [],
"acc_cc_manifolds": [],
"gravity": flax.serialization.to_state_dict(env_state.gravity.tolist()),
}
def _rigidbody_to_json(index: int, is_poly):
main_arr = env_state.polygon if is_poly else env_state.circle
c = jax.tree.map(lambda x: x[index].tolist(), main_arr)
roles = env_state.polygon_shape_roles if is_poly else env_state.circle_shape_roles
densities = env_state.polygon_densities if is_poly else env_state.circle_densities
highlighted = env_state.polygon_highlighted if is_poly else env_state.circle_highlighted
d = flax.serialization.to_state_dict(c)
d["role"] = roles[index].tolist()
d["density"] = densities[index].tolist()
d["highlighted"] = highlighted[index].tolist()
return d
def _joint_to_json(i):
joint = jax.tree.map(lambda x: x[i].tolist(), env_state.joint)
d = flax.serialization.to_state_dict(joint)
d["motor_binding"] = env_state.motor_bindings[i].tolist()
return d
def _thruster_to_json(i):
thruster = jax.tree.map(lambda x: x[i].tolist(), env_state.thruster)
d = flax.serialization.to_state_dict(thruster)
d["thruster_binding"] = env_state.thruster_bindings[i].tolist()
return d
for i in range(static_env_params.num_circles):
json_to_save["circle"].append(_rigidbody_to_json(i, False))
for i in range(static_env_params.num_polygons):
json_to_save["polygon"].append(_rigidbody_to_json(i, True))
for i in range(static_env_params.num_joints):
json_to_save["joint"].append(_joint_to_json(i))
for i in range(static_env_params.num_thrusters):
json_to_save["thruster"].append(_thruster_to_json(i))
ncc, ncr, nrr, circle_circle_pairs, circle_rect_pairs, rect_rect_pairs = get_pairwise_interaction_indices(
static_env_params
)
for i in range(nrr):
a = jax.tree.map(lambda x: x[i, 0].tolist(), env_state.acc_rr_manifolds)
b = jax.tree.map(lambda x: x[i, 1].tolist(), env_state.acc_rr_manifolds)
json_to_save["acc_rr_manifolds"].append(flax.serialization.to_state_dict(a))
json_to_save["acc_rr_manifolds"].append(flax.serialization.to_state_dict(b))
for i in range(ncr):
a = jax.tree.map(lambda x: x[i].tolist(), env_state.acc_cr_manifolds)
json_to_save["acc_cr_manifolds"].append(flax.serialization.to_state_dict(a))
for i in range(ncc):
a = jax.tree.map(lambda x: x[i].tolist(), env_state.acc_cc_manifolds)
json_to_save["acc_cc_manifolds"].append(flax.serialization.to_state_dict(a))
to_save = {
"env_state": json_to_save,
"env_params": flax.serialization.to_state_dict(
jax.tree.map(lambda x: x.tolist() if type(x) == jnp.ndarray else x, env_params)
),
"static_env_params": flax.serialization.to_state_dict(
jax.tree.map(lambda x: x.tolist() if type(x) == jnp.ndarray else x, static_env_params)
),
}
with open(filename, "w+") as f:
json.dump(to_save, f)
return to_save
def load_from_json_file(filename):
with open(filename, "r") as f:
return import_env_state_from_json(json.load(f))
if __name__ == "__main__":
pass
|