Spaces:
Runtime error
Runtime error
File size: 20,694 Bytes
581eeac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 |
from functools import partial
import json
import os
import re
import time
from enum import IntEnum
from typing import Tuple
import chex
import jax
import jax.numpy as jnp
import numpy as np
import optax
import orbax.checkpoint as ocp
from flax import core, struct
from flax.training.train_state import TrainState as BaseTrainState
import wandb
from jaxued.environments.underspecified_env import EnvParams, EnvState, Observation, UnderspecifiedEnv
from jaxued.level_sampler import LevelSampler
from jaxued.utils import compute_max_returns, max_mc, positive_value_loss
from kinetix.environment.env import PixelObservations, make_kinetix_env_from_name
from kinetix.environment.env_state import StaticEnvParams
from kinetix.environment.utils import permute_pcg_state
from kinetix.environment.wrappers import (
UnderspecifiedToGymnaxWrapper,
LogWrapper,
DenseRewardWrapper,
AutoReplayWrapper,
)
from kinetix.models import make_network_from_config
from kinetix.pcg.pcg import env_state_to_pcg_state
from kinetix.render.renderer_pixels import make_render_pixels
from kinetix.models.actor_critic import ScannedRNN
from kinetix.util.saving import (
expand_pcg_state,
get_pcg_state_from_json,
load_pcg_state_pickle,
load_world_state_pickle,
stack_list_of_pytrees,
import_env_state_from_json,
load_from_json_file,
)
from flax.training.train_state import TrainState
BASE_DIR = "worlds"
DEFAULT_EVAL_LEVELS = [
"easy.cartpole",
"easy.flappy_bird",
"easy.unicycle",
"easy.car_left",
"easy.car_right",
"easy.pinball",
"easy.swing_up",
"easy.thruster",
]
def get_eval_levels(eval_levels, static_env_params):
should_permute = [".permute" in l for l in eval_levels]
eval_levels = [re.sub(r"\.permute\d+", "", l) for l in eval_levels]
ls = [get_pcg_state_from_json(os.path.join(BASE_DIR, l + ("" if l.endswith(".json") else ".json"))) for l in eval_levels]
ls = [expand_pcg_state(l, static_env_params) for l in ls]
new_ls = []
rng = jax.random.PRNGKey(0)
for sp, l in zip(should_permute, ls):
rng, _rng = jax.random.split(rng)
if sp:
l = permute_pcg_state(_rng, l, static_env_params)
new_ls.append(l)
return stack_list_of_pytrees(new_ls)
def evaluate_rnn( # from jaxued
rng: chex.PRNGKey,
env: UnderspecifiedEnv,
env_params: EnvParams,
train_state: TrainState,
init_hstate: chex.ArrayTree,
init_obs: Observation,
init_env_state: EnvState,
max_episode_length: int,
keep_states=True,
return_trajectories=False,
) -> Tuple[chex.Array, chex.Array, chex.Array]:
"""This runs the RNN on the environment, given an initial state and observation, and returns (states, rewards, episode_lengths)
Args:
rng (chex.PRNGKey):
env (UnderspecifiedEnv):
env_params (EnvParams):
train_state (TrainState):
init_hstate (chex.ArrayTree): Shape (num_levels, )
init_obs (Observation): Shape (num_levels, )
init_env_state (EnvState): Shape (num_levels, )
max_episode_length (int):
Returns:
Tuple[chex.Array, chex.Array, chex.Array]: (States, rewards, episode lengths) ((NUM_STEPS, NUM_LEVELS), (NUM_STEPS, NUM_LEVELS), (NUM_LEVELS,)
"""
num_levels = jax.tree_util.tree_flatten(init_obs)[0][0].shape[0]
def step(carry, _):
rng, hstate, obs, state, done, mask, episode_length = carry
rng, rng_action, rng_step = jax.random.split(rng, 3)
x = jax.tree.map(lambda x: x[None, ...], (obs, done))
hstate, pi, _ = train_state.apply_fn(train_state.params, hstate, x)
action = pi.sample(seed=rng_action).squeeze(0)
obs, next_state, reward, done, info = jax.vmap(env.step, in_axes=(0, 0, 0, None))(
jax.random.split(rng_step, num_levels), state, action, env_params
)
next_mask = mask & ~done
episode_length += mask
if keep_states:
return (rng, hstate, obs, next_state, done, next_mask, episode_length), (state, reward, done, info)
else:
return (rng, hstate, obs, next_state, done, next_mask, episode_length), (None, reward, done, info)
(_, _, _, _, _, _, episode_lengths), (states, rewards, dones, infos) = jax.lax.scan(
step,
(
rng,
init_hstate,
init_obs,
init_env_state,
jnp.zeros(num_levels, dtype=bool),
jnp.ones(num_levels, dtype=bool),
jnp.zeros(num_levels, dtype=jnp.int32),
),
None,
length=max_episode_length,
)
done_idx = jnp.argmax(dones, axis=0)
to_return = (states, rewards, done_idx, episode_lengths, infos)
if return_trajectories:
return to_return, (dones, rewards)
return to_return
def general_eval(
rng: chex.PRNGKey,
eval_env: UnderspecifiedEnv,
env_params: EnvParams,
train_state: TrainState,
levels: EnvState,
num_eval_steps: int,
num_levels: int,
keep_states=True,
return_trajectories=False,
):
"""
This evaluates the current policy on the set of evaluation levels
It returns (states, cum_rewards, episode_lengths), with shapes (num_steps, num_eval_levels, ...), (num_eval_levels,), (num_eval_levels,)
"""
rng, rng_reset = jax.random.split(rng)
init_obs, init_env_state = jax.vmap(eval_env.reset_to_level, (0, 0, None))(
jax.random.split(rng_reset, num_levels), levels, env_params
)
init_hstate = ScannedRNN.initialize_carry(num_levels)
(states, rewards, done_idx, episode_lengths, infos), (dones, reward) = evaluate_rnn(
rng,
eval_env,
env_params,
train_state,
init_hstate,
init_obs,
init_env_state,
num_eval_steps,
keep_states=keep_states,
return_trajectories=True,
)
mask = jnp.arange(num_eval_steps)[..., None] < episode_lengths
cum_rewards = (rewards * mask).sum(axis=0)
to_return = (
states,
cum_rewards,
done_idx,
episode_lengths,
infos,
) # (num_steps, num_eval_levels, ...), (num_eval_levels,), (num_eval_levels,)
if return_trajectories:
return to_return, (dones, reward)
return to_return
def compute_gae(
gamma: float,
lambd: float,
last_value: chex.Array,
values: chex.Array,
rewards: chex.Array,
dones: chex.Array,
) -> Tuple[chex.Array, chex.Array]:
"""This takes in arrays of shape (NUM_STEPS, NUM_ENVS) and returns the advantages and targets.
Args:
gamma (float):
lambd (float):
last_value (chex.Array): Shape (NUM_ENVS)
values (chex.Array): Shape (NUM_STEPS, NUM_ENVS)
rewards (chex.Array): Shape (NUM_STEPS, NUM_ENVS)
dones (chex.Array): Shape (NUM_STEPS, NUM_ENVS)
Returns:
Tuple[chex.Array, chex.Array]: advantages, targets; each of shape (NUM_STEPS, NUM_ENVS)
"""
def compute_gae_at_timestep(carry, x):
gae, next_value = carry
value, reward, done = x
delta = reward + gamma * next_value * (1 - done) - value
gae = delta + gamma * lambd * (1 - done) * gae
return (gae, value), gae
_, advantages = jax.lax.scan(
compute_gae_at_timestep,
(jnp.zeros_like(last_value), last_value),
(values, rewards, dones),
reverse=True,
unroll=16,
)
return advantages, advantages + values
def sample_trajectories_rnn(
rng: chex.PRNGKey,
env: UnderspecifiedEnv,
env_params: EnvParams,
train_state: TrainState,
init_hstate: chex.ArrayTree,
init_obs: Observation,
init_env_state: EnvState,
num_envs: int,
max_episode_length: int,
return_states: bool = False,
) -> Tuple[
Tuple[chex.PRNGKey, TrainState, chex.ArrayTree, Observation, EnvState, chex.Array],
Tuple[Observation, chex.Array, chex.Array, chex.Array, chex.Array, chex.Array, dict],
]:
"""This samples trajectories from the environment using the agent specified by the `train_state`.
Args:
rng (chex.PRNGKey): Singleton
env (UnderspecifiedEnv):
env_params (EnvParams):
train_state (TrainState): Singleton
init_hstate (chex.ArrayTree): This is the init RNN hidden state, has to have shape (NUM_ENVS, ...)
init_obs (Observation): The initial observation, shape (NUM_ENVS, ...)
init_env_state (EnvState): The initial env state (NUM_ENVS, ...)
num_envs (int): The number of envs that are vmapped over.
max_episode_length (int): The maximum episode length, i.e., the number of steps to do the rollouts for.
Returns:
Tuple[Tuple[chex.PRNGKey, TrainState, chex.ArrayTree, Observation, EnvState, chex.Array], Tuple[Observation, chex.Array, chex.Array, chex.Array, chex.Array, chex.Array, dict]]: (rng, train_state, hstate, last_obs, last_env_state, last_value), traj, where traj is (obs, action, reward, done, log_prob, value, info). The first element in the tuple consists of arrays that have shapes (NUM_ENVS, ...) (except `rng` and and `train_state` which are singleton). The second element in the tuple is of shape (NUM_STEPS, NUM_ENVS, ...), and it contains the trajectory.
"""
def sample_step(carry, _):
rng, train_state, hstate, obs, env_state, last_done = carry
prev_state = env_state
rng, rng_action, rng_step = jax.random.split(rng, 3)
x = jax.tree.map(lambda x: x[None, ...], (obs, last_done))
hstate, pi, value = train_state.apply_fn(train_state.params, hstate, x)
action = pi.sample(seed=rng_action)
log_prob = pi.log_prob(action)
value, action, log_prob = jax.tree.map(lambda x: x.squeeze(0), (value, action, log_prob))
next_obs, env_state, reward, done, info = jax.vmap(env.step, in_axes=(0, 0, 0, None))(
jax.random.split(rng_step, num_envs), env_state, action, env_params
)
carry = (rng, train_state, hstate, next_obs, env_state, done)
step = (obs, action, reward, done, log_prob, value, info)
if return_states:
step += (prev_state,)
return carry, step
(rng, train_state, hstate, last_obs, last_env_state, last_done), traj = jax.lax.scan(
sample_step,
(
rng,
train_state,
init_hstate,
init_obs,
init_env_state,
jnp.zeros(num_envs, dtype=bool),
),
None,
length=max_episode_length,
)
x = jax.tree.map(lambda x: x[None, ...], (last_obs, last_done))
_, _, last_value = train_state.apply_fn(train_state.params, hstate, x)
my_obs = traj[0]
rew = traj[2]
return (rng, train_state, hstate, last_obs, last_env_state, last_value.squeeze(0)), traj
def update_actor_critic_rnn(
rng: chex.PRNGKey,
train_state: TrainState,
init_hstate: chex.ArrayTree,
batch: chex.ArrayTree,
num_envs: int,
n_steps: int,
n_minibatch: int,
n_epochs: int,
clip_eps: float,
entropy_coeff: float,
critic_coeff: float,
update_grad: bool = True,
) -> Tuple[Tuple[chex.PRNGKey, TrainState], chex.ArrayTree]:
"""This function takes in a rollout, and PPO hyperparameters, and updates the train state.
Args:
rng (chex.PRNGKey):
train_state (TrainState):
init_hstate (chex.ArrayTree):
batch (chex.ArrayTree): obs, actions, dones, log_probs, values, targets, advantages
num_envs (int):
n_steps (int):
n_minibatch (int):
n_epochs (int):
clip_eps (float):
entropy_coeff (float):
critic_coeff (float):
update_grad (bool, optional): If False, the train state does not actually get updated. Defaults to True.
Returns:
Tuple[Tuple[chex.PRNGKey, TrainState], chex.ArrayTree]: It returns a new rng, the updated train_state, and the losses. The losses have structure (loss, (l_vf, l_clip, entropy))
"""
obs, actions, dones, log_probs, values, targets, advantages = batch
last_dones = jnp.roll(dones, 1, axis=0).at[0].set(False)
batch = obs, actions, last_dones, log_probs, values, targets, advantages
def update_epoch(carry, _):
def update_minibatch(train_state, minibatch):
init_hstate, obs, actions, last_dones, log_probs, values, targets, advantages = minibatch
def loss_fn(params):
_, pi, values_pred = train_state.apply_fn(params, init_hstate, (obs, last_dones))
log_probs_pred = pi.log_prob(actions)
entropy = pi.entropy().mean()
ratio = jnp.exp(log_probs_pred - log_probs)
A = (advantages - advantages.mean()) / (advantages.std() + 1e-8)
l_clip = (-jnp.minimum(ratio * A, jnp.clip(ratio, 1 - clip_eps, 1 + clip_eps) * A)).mean()
values_pred_clipped = values + (values_pred - values).clip(-clip_eps, clip_eps)
l_vf = 0.5 * jnp.maximum((values_pred - targets) ** 2, (values_pred_clipped - targets) ** 2).mean()
loss = l_clip + critic_coeff * l_vf - entropy_coeff * entropy
return loss, (l_vf, l_clip, entropy)
grad_fn = jax.value_and_grad(loss_fn, has_aux=True)
loss, grads = grad_fn(train_state.params)
if update_grad:
train_state = train_state.apply_gradients(grads=grads)
grad_norm = jnp.linalg.norm(
jnp.concatenate(jax.tree_util.tree_map(lambda x: x.flatten(), jax.tree_util.tree_flatten(grads)[0]))
)
return train_state, (loss, grad_norm)
rng, train_state = carry
rng, rng_perm = jax.random.split(rng)
permutation = jax.random.permutation(rng_perm, num_envs)
minibatches = (
jax.tree.map(
lambda x: jnp.take(x, permutation, axis=0).reshape(n_minibatch, -1, *x.shape[1:]),
init_hstate,
),
*jax.tree.map(
lambda x: jnp.take(x, permutation, axis=1)
.reshape(x.shape[0], n_minibatch, -1, *x.shape[2:])
.swapaxes(0, 1),
batch,
),
)
train_state, (losses, grads) = jax.lax.scan(update_minibatch, train_state, minibatches)
return (rng, train_state), (losses, grads)
return jax.lax.scan(update_epoch, (rng, train_state), None, n_epochs)
@partial(jax.jit, static_argnums=(0, 2, 8, 9))
def sample_trajectories_and_learn(
env: UnderspecifiedEnv,
env_params: EnvParams,
config: dict,
rng: chex.PRNGKey,
train_state: TrainState,
init_hstate: chex.Array,
init_obs: Observation,
init_env_state: EnvState,
update_grad: bool = True,
return_states: bool = False,
) -> Tuple[
Tuple[chex.PRNGKey, TrainState, Observation, EnvState],
Tuple[
Observation,
chex.Array,
chex.Array,
chex.Array,
chex.Array,
chex.Array,
dict,
chex.Array,
chex.Array,
chex.ArrayTree,
chex.Array,
],
]:
"""This function loops the following:
- rollout for config['num_steps']
- learn / update policy
And it loops it for config['outer_rollout_steps'].
What is returns is a new carry (rng, train_state, init_obs, init_env_state), and concatenated rollouts. The shape of the rollouts are config['num_steps'] * config['outer_rollout_steps']. In other words, the trajectories returned by this function are the same as if we ran rollouts for config['num_steps'] * config['outer_rollout_steps'] steps, but the agent does perform PPO updates in between.
Args:
env (UnderspecifiedEnv):
env_params (EnvParams):
config (dict):
rng (chex.PRNGKey):
train_state (TrainState):
init_obs (Observation):
init_env_state (EnvState):
update_grad (bool, optional): Defaults to True.
Returns:
Tuple[Tuple[chex.PRNGKey, TrainState, Observation, EnvState], Tuple[Observation, chex.Array, chex.Array, chex.Array, chex.Array, chex.Array, dict, chex.Array, chex.Array, chex.ArrayTree, chex.Array]]: This returns a tuple:
(
(rng, train_state, init_obs, init_env_state),
(obs, actions, rewards, dones, log_probs, values, info, advantages, targets, losses, grads)
)
"""
def single_step(carry, _):
rng, train_state, init_hstate, init_obs, init_env_state = carry
((rng, train_state, new_hstate, last_obs, last_env_state, last_value), traj,) = sample_trajectories_rnn(
rng,
env,
env_params,
train_state,
init_hstate,
init_obs,
init_env_state,
config["num_train_envs"],
config["num_steps"],
return_states=return_states,
)
if return_states:
states = traj[-1]
traj = traj[:-1]
(obs, actions, rewards, dones, log_probs, values, info) = traj
advantages, targets = compute_gae(config["gamma"], config["gae_lambda"], last_value, values, rewards, dones)
# Update the policy using trajectories collected from replay levels
(rng, train_state), (losses, grads) = update_actor_critic_rnn(
rng,
train_state,
init_hstate,
(obs, actions, dones, log_probs, values, targets, advantages),
config["num_train_envs"],
config["num_steps"],
config["num_minibatches"],
config["update_epochs"],
config["clip_eps"],
config["ent_coef"],
config["vf_coef"],
update_grad=update_grad,
)
new_carry = (rng, train_state, new_hstate, last_obs, last_env_state)
step = (obs, actions, rewards, dones, log_probs, values, info, advantages, targets, losses, grads)
if return_states:
step += (states,)
return new_carry, step
carry = (rng, train_state, init_hstate, init_obs, init_env_state)
new_carry, all_rollouts = jax.lax.scan(single_step, carry, None, length=config["outer_rollout_steps"])
all_rollouts = jax.tree_util.tree_map(lambda x: jnp.concatenate(x, axis=0), all_rollouts)
return new_carry, all_rollouts
def no_op_rollout(
env: UnderspecifiedEnv,
env_params: EnvParams,
rng: chex.PRNGKey,
init_obs: Observation,
init_env_state: EnvState,
num_envs: int,
max_episode_length: int,
do_random=False,
):
noop = jnp.array(env.action_type.noop_action())
zero_action = jnp.repeat(noop[None, ...], num_envs, axis=0)
SHAPE = zero_action.shape
def sample_step(carry, _):
rng, obs, env_state, last_done = carry
rng, rng_step, _rng = jax.random.split(rng, 3)
if do_random:
action = jax.vmap(env.action_space(env_params).sample)(jax.random.split(_rng, num_envs))
else:
action = zero_action
next_obs, env_state, reward, done, info = jax.vmap(env.step, in_axes=(0, 0, 0, None))(
jax.random.split(rng_step, num_envs), env_state, action, env_params
)
carry = (rng, next_obs, env_state, done)
return carry, (obs, action, reward, done, info)
(rng, last_obs, last_env_state, last_done), traj = jax.lax.scan(
sample_step,
(
rng,
init_obs,
init_env_state,
jnp.zeros(num_envs, dtype=bool),
),
None,
length=max_episode_length,
)
info = traj[-1]
dones = traj[-2]
returns_per_env = (info["returned_episode_returns"] * dones).sum(axis=0) / jnp.maximum(1, dones.sum(axis=0))
lens_per_env = (info["returned_episode_lengths"] * dones).sum(axis=0) / jnp.maximum(1, dones.sum(axis=0))
success_per_env = (info["returned_episode_solved"] * dones).sum(axis=0) / jnp.maximum(1, dones.sum(axis=0))
return returns_per_env, lens_per_env, success_per_env
def no_op_and_random_rollout(
env: UnderspecifiedEnv,
env_params: EnvParams,
rng: chex.PRNGKey,
init_obs: Observation,
init_env_state: EnvState,
num_envs: int,
max_episode_length: int,
):
returns_noop, lens_noop, success_noop = no_op_rollout(
env, env_params, rng, init_obs, init_env_state, num_envs, max_episode_length, do_random=False
)
returns_random, lens_random, success_random = no_op_rollout(
env, env_params, rng, init_obs, init_env_state, num_envs, max_episode_length, do_random=True
)
return returns_noop, lens_noop, success_noop, returns_random, lens_random, success_random
|