QuotesBot / app.py
tracinginsights's picture
Update app.py
b3e958c
import pandas as pd
import requests
import isort
import black
import flair
import time
from bs4 import BeautifulSoup
import re
import numpy as np
import os
from flair.data import Sentence
from flair.models import SequenceTagger
from transformers import AutoTokenizer, AutoModelForQuestionAnswering, pipeline
import string
import textwrap
import tweepy
import gradio as gr
URL = "https://www.formula1.com/content/fom-website/en/latest/all.xml"
api_key = os.environ['api_key']
secret_api_key = os.environ['secret_api_key']
access_token = os.environ['access_token']
secret_access_token = os.environ['secret_access_token']
bearer_token = os.environ['bearer_token']
def get_xml(url):
# xpath is only for formula1
# use urllib.parse to check for formula1.com website or other news
xml = pd.read_xml(url,xpath='channel/item')
return xml
cols_list = ['title', 'description', 'link', 'creator', 'guid']
previous_xml = pd.DataFrame(columns=cols_list)
# care taken to only consider results where there are more words not a single word quotes
def extract_quote(string):
# Use the re.findall function to extract the quoted text
results = re.findall(r'[β€œ\"](.*?)[”\"]', string)
quotes = []
for result in results:
split_result = result.split()
if len(split_result) >3:
quotes.append(result)
return quotes
def get_names(text):
# # load the NER tagger
tagger = SequenceTagger.load('ner')
sentence = Sentence(text)
tagger.predict(sentence)
names = []
for label in sentence.get_labels('ner'):
if label.value == "PER":
names.append(f"{label.data_point.text}")
# convert to a set to remove some of the repetitions
names = list(set(names))
return names
def get_text(new_articles_df):
"""
quotes outputs a list of quotes
"""
dfs_dict = {}
for article in new_articles_df.iterrows():
link = article[1]["guid"]
request = requests.get(link)
soup = BeautifulSoup(request.content, "html.parser")
# class_ below will be different for different websites
s = soup.find("div", class_="col-lg-8 col-xl-7 offset-xl-1 f1-article--content")
lines = s.find_all("p")
text_content = pd.DataFrame(data={"text": []})
for i, line in enumerate(lines):
df = pd.DataFrame(data={"text": [line.text]})
text_content = pd.concat([text_content, df], ignore_index=True)
strongs = s.find_all("strong")
strong_content = pd.DataFrame(data={"text": []})
for i, strong in enumerate(strongs):
if i > 0:
df = pd.DataFrame(data={"text": [strong.text]})
strong_content = pd.concat([strong_content, df], ignore_index=True)
# df has content
df = text_content[~text_content["text"].isin(strong_content["text"])].reset_index(
drop=True
)
# df["quote"] = df["text"].apply(lambda row: extract_quote(row))
# # combine all rows into context
context = ""
for i,row in df.iterrows():
context += f" {row['text']}"
quotes = extract_quote(context)
# to save some time not computing unnecessary NER
if len(quotes) != 0:
speakers = get_names(context)
else:
speakers = ()
dfs_dict[link] = {'context':context, 'quotes':quotes, 'speakers':speakers}
return dfs_dict
def load_speaker_model():
model_name = f"deepset/xlm-roberta-large-squad2"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForQuestionAnswering.from_pretrained(model_name)
question_answerer = pipeline("question-answering", model=model, tokenizer=tokenizer)
return question_answerer
question_answerer = load_speaker_model()
def remove_punctuations(text):
modified_text = "".join([character for character in text if character not in string.punctuation])
modified_text = modified_text.lstrip(" ")
modified_text = modified_text.rstrip(" ")
return modified_text
def get_speaker_quotes(dfs_dict, question_answerer):
speaker_quote = []
for link in dfs_dict:
context = dfs_dict[link]['context']
quotes = dfs_dict[link]['quotes']
potential_speakers = dfs_dict[link]['speakers']
if len(quotes) != 0:
#loop through the list of quotes
for quote in quotes:
# max_seq_len == 384 : https://huggingface.co/deepset/roberta-base-squad2
full_quote = quote
if len(quote) >380:
quote = quote[:384]
speaker_dict = question_answerer(question=f"Who said '{quote}'?", context=context)
speaker = speaker_dict['answer']
if len(speaker) >0:
speaker = remove_punctuations(speaker_dict['answer'])
if speaker not in potential_speakers:
speaker = ""
quote = ""
else:
pair = {'speaker':speaker, 'quote': quote, 'source':link}
speaker_quote.append(pair)
return speaker_quote
def post_to_twitter():
twitter_api_key = api_key
twitter_secret_api_key = secret_api_key
twitter_access_token = access_token
twitter_secret_access_token = secret_access_token
twitter_bearer_token = bearer_token
api = tweepy.Client(bearer_token=twitter_bearer_token, consumer_key=twitter_api_key,
consumer_secret=twitter_secret_api_key, access_token=twitter_access_token,
access_token_secret=twitter_secret_access_token,wait_on_rate_limit=True
)
#tweet = api.create_tweet(text=post_title, in_reply_to_tweet_id=in_reply_to_tweet_id)
return api
def split_near_space(string, max_length):
# Split the string into lines based on the maximum line width, breaking only at spaces
lines = textwrap.wrap(string, width=max_length,)
return lines
def send_tweets(speaker_quote):
for i, pair in enumerate(speaker_quote):
speaker = pair['speaker']
quote = pair['quote']
source = pair['source']
total_tweet_length = len(speaker) + len(quote) + 10 # 10 is for emojis and #f1 hashtag
tweet_text = f"πŸ—£οΈ | {speaker}: '{quote}'"
api = post_to_twitter()
if total_tweet_length < 280:
try:
first_tweet = api.create_tweet(text=tweet_text, )
first_tweet_id = first_tweet.data['id']
second_tweet = api.create_tweet(text=f"Source: {source}", in_reply_to_tweet_id=first_tweet_id)
except:
continue
else:
quotes_list = split_near_space(quote, 280 - len(speaker) -10)
thread_id = None
try:
for i, quote in enumerate(quotes_list):
tweet_text = f"'...{quote}...'"
if i == 0:
tweet_text = f"πŸ—£οΈ | {speaker}: '{quote}...'"
if i ==len(quotes_list) -1:
tweet_text = f"'...{quote}'"
recent_tweet = api.create_tweet(text=tweet_text, in_reply_to_tweet_id=thread_id)
thread_id = recent_tweet.data['id']
last_tweet = api.create_tweet(text=f"Source: {source}", in_reply_to_tweet_id=thread_id)
except:
continue
def check_updates(every=300):
while True:
time.sleep(every)
latest_xml = get_xml(URL)
if ~previous_xml.equals(latest_xml):
print('New articles found')
new_articles_df = latest_xml[~latest_xml["guid"].isin(previous_xml["guid"])]
# loops through new articles and gets the necessary text, quotes and speakers
dfs_dict = get_text(new_articles_df)
speaker_quote = get_speaker_quotes(dfs_dict, question_answerer)
send_tweets(speaker_quote)
else:
print('No New article is found')
demo = gr.Interface(fn=check_updates, inputs="number", outputs="text", analytics_enabled=True)
demo.launch(max_threads=1, show_api=False)